[1] Pastare L., Romagnoli F. Life Cycle Cost Analysis of Biogas Production from Cerathophyllum demersum, Fucus vesiculosus and Ulva intestinalis in Latvian Conditions. Environmental and Climate Technologies 2019:23(2):258–271. https://doi.org/10.2478/rtuect-2019-006710.2478/rtuect-2019-0067
[2] Zihare L., Gusca J., Spalvins K., Blumberga D. Priorities Determination of Using Bioresources. Case Study of Heracleum sosnowskyi. Environmental and Climate Technologies 2019:23(1):242–256. https://doi.org/10.2478/rtuect-2019-001610.2478/rtuect-2019-0016
[9] Maehre H. K., et al. Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. Journal of the Science of Food and Agriculture 2014:94(15):3281–3290. https://doi.org/10.1002/jsfa.668110.1002/jsfa.6681
[18] Venkatesan J., Anil S., Kim S. K. Eds. Seaweed Polysaccharides, 1st ed. Isolation, Biological and Biomedical Applications. Elsevier, 2017.10.1016/B978-0-12-809816-5.00001-3
[20] Spurr H. I. Extraction, separation and purification of polyphenols, polysaccharides and pigments from British seaweed for high-value applications. Thesis (PhD),White Rose, 2014.
[21] Fleurence J., Morançais M., Dumay J. Seaweed proteins. In Proteins in Food Processing (Second Edition). Woodhead Publishing Series in Food Science, Technology and Nutrition 2018, 245–262.10.1016/B978-0-08-100722-8.00010-3
[23] Werlinger C., Alveal K., Romo H. Biología marina y oceanografía: conceptos y procesos. (Marine biology and oceanography: Concepts and processes.) Chile: University of Consepcion, 2009 (in Spanish)
[27] Milledge J. J., Nielsen B. V., Bailey D. High-value products from macroalgae: the potential uses of the invasive brown seaweed, Sargassum muticum. Reviews in Environmental Science and Biotechnology 2016:15:67–88. https://doi.org/10.1007/s11157-015-9381-710.1007/s11157-015-9381-7
[28] Kersen P., Paalme T., Pajusalu L., Martin G. Biotechnological applications of the red alga Furcellaria lumbricalis and its cultivation potential in the Baltic Sea. Botanica Marina 2017:60(2):207–218. https://doi.org/10.1515/bot-2016-006210.1515/bot-2016-0062
[33] Bergeron C., Carrier D. J., Ramaswamy S. Biorefinery Co-Products: Phytochemicals, Primary Metabolites and Value-Added Biomass Processing. John Wiley and Sons, Inc., 201210.1002/9780470976692
[34] Meenakshi S., et al. Total flavanoid and in vitro antioxidant activity of two seaweeds of Rameshwaram coast. Global Journal of Pharmacology 2009:3(2):59–66.
[37] Peasura N., Laohakunjit N., Kerdchoechuen O., Wanlapa S. Characteristics and antioxidant of Ulva intestinalis sulphated polysaccharides extracted with different solvents. International Journal of Biological Macromolecules 2015:81:912–919. https://doi.org/10.1016/j.ijbiomac.2015.09.03010.1016/j.ijbiomac.2015.09.030
[39] Szaniawska A., Normant M. Szaniawska, Normant - 2000 - The biochemical composition of Enteromorpha spp. from the Gulf of Gdańsk coast on the southern Balt. Oceanologia 2000:42(1):19–28.
[42] Tabarsa M., You S. G., Dabaghian E. H., Surayot U. Water-soluble polysaccharides from Ulva intestinalis: Molecular properties, structural elucidation and immunomodulatory activities. Journal of Food and Drug Analysis 2018:26(2):599–608. https://doi.org/10.1016/j.jfda.2017.07.01610.1016/j.jfda.2017.07.01629567229
[43] Graiff A., Liesner D., Karsten U., Bartsch I. Temperature tolerance of western Baltic Sea Fucus vesiculosus – growth, photosynthesis and survival. Journal of Experimental Marine Biology and Ecology 2015:471:8–16. https://doi.org/10.1016/j.jembe.2015.05.00910.1016/j.jembe.2015.05.009
[44] Tuvikene A. R., Robal M. Valgulised pigmendid Läänemere punavetikast Furcellaria lumbricalis : sisaldus ja eraldamisvõimalused. (Proteinic pigments from Baltic red algae Furcellaria lumbricalis: content and isolation possibilities.) Tallin: Tallin University, 2015. (in Estonian)
[45] Bird C. J., Saunders G. W., McLachlan J. Biology of Furcellaria lumbricalis (Hudson) Lamouroux (Rhodophyta: Gigartinales), a commercial carrageenophyte. Journal of Applied Phycology 1991:3(1):61–82. https://doi.org/10.1007/BF0000392010.1007/BF00003920
[46] Rahimi F., Tabarsa M., Rezaei M. Ulvan from green algae Ulva intestinalis: optimization of ultrasound-assisted extraction and antioxidant activity. Journal of Applied Phycology 2016:28(5):2979–2990. https://doi.org/10.1007/s10811-016-0824-510.1007/s10811-016-0824-5
[47] Benjama O., Masniyom P. Nutritional composition and physicochemical properties of two green seaweeds (Ulva pertusa and U. intestinalis) from the Pattani Bay in Southern Thailand. Songklanakarin Journal of Science and Technology 2011:33(5):575–583.
[50] Parjikolaei B. R., et al. Valuable Biomolecules from Nine North Atlantic Red Macroalgae: Amino Acids, Fatty Acids, Carotenoids, Minerals and Metals. Natural Resources 2016:7(4):157–183. https://doi.org/10.4236/nr.2016.7401610.4236/nr.2016.74016
[59] Rohani-Ghadikolaei K., Abdulalian E., Ng W. K. Evaluation of the proximate, fatty acid and mineral composition of representative green, brown and red seaweeds from the Persian Gulf of Iran as potential food and feed resources. Journal of Food Science and Technology 2012:49(6):774–780. https://doi.org/10.1007/s13197-010-0220-010.1007/s13197-010-0220-0355083124293698
[60] Biancarosa I., et al. Chemical characterization of 21 species of marine macroalgae common in Norwegian waters: benefits of and limitations to their potential use in food and feed. Journal of the Science of Food and Agriculture 2018:98(5):2035–2042. https://doi.org/10.1002/jsfa.879810.1002/jsfa.8798588813829193189
[67] Kadam S. U., et al. Processing of seaweeds. In Seaweed Sustainability, Food and Non-Food Applications 2015:61–78, Elsevier Inc., 2015.10.1016/B978-0-12-418697-2.00004-0
[74] Grosso C., Valentão P., Ferreres F., Andrade P. B. Alternative and efficient extraction methods for marine-derived compounds. Marine Drugs 2015:13(5):3182–3230. https://doi.org/10.3390/md130531810.3390/md13053182
[79] Kazir M., et al. Extraction of proteins from two marine macroalgae, Ulva sp. and Gracilaria sp., for food application, and evaluating digestibility, amino acid composition and antioxidant properties of the protein concentrates. Food Hydrocolloids 2019:87:194–203. https://doi.org/10.1016/j.foodhyd.2018.07.04710.1016/j.foodhyd.2018.07.047
[85] Gribovskaya I. V., Gladchenko I. A., Zinenko G. K. Extraction of mineral elements from inedible wastes of biological components of a life-support system and their utilization for plant nutrition. Advances in Space Research 1996:18(4–5):93–97. https://doi.org/10.1016/0273-1177(95)00865-C10.1016/0273-1177(95)00865-C
[87] Chemat F., Vian M. A., Cravotto G. Green extraction of natural products: Concept and principles. International Journal of Molecular Sciences 2012:13(7):8615–8627. https://doi.org/10.3390/ijms130786110.3390/ijms13078615
[90] Quitain A. T., Kai T., Sasaki M., Goto M. Supercritical carbon dioxide extraction of fucoxanthin from undaria pinnatifida. Journal of Agricultural and Food Chemistry 2013:61(24):5792–5797. https://doi.org/10.1021/jf400740p10.1021/jf400740p23742680
[91] Heffernan N., et al. Comparison of extraction methods for selected carotenoids from macroalgae and the assessment of their seasonal/spatial variation. Innovative Food Science and Emerging Technologies 2016:37(B):221–228. https://doi.org/10.1016/j.ifset.2016.06.00410.1016/j.ifset.2016.06.004
[95] Magnusson M., et al. A comparative assessment of microwave assisted (MAE) and conventional solid-liquid (SLE) techniques for the extraction of phloroglucinol from brown seaweed. Algal Research 2017:23:28–36. https://doi.org/10.1016/j.algal.2017.01.00210.1016/j.algal.2017.01.002
[96] Quitain A. T., Kai T., Sasaki M., Goto M. Microwave-hydrothermal extraction and degradation of fucoidan from supercritical carbon dioxide deoiled Undaria pinnatifida. Industrial and Engineering Chemistry Research 2013:52(23):7940–7946. https://doi.org/10.1021/ie400527b10.1021/ie400527b
[102] Kadam S. U., et al. Laminarin from Irish Brown Seaweeds Ascophyllum nodosum and Laminaria hyperborea: Ultrasound Assisted Extraction, Characterization and Bioactivity. Marine Drugs 2015:13(7):4270–4280. https://doi.org/10.3390/md1307427010.3390/md13074270451561626184235
[103] Dang T. T., et al. Optimisation of ultrasound-assisted extraction conditions for phenolic content and antioxidant activities of the alga Hormosira banksii using response surface methodology. Journal of Applied Phycology 2017:29(6):3161–3173. https://doi.org/10.1007/s10811-017-1162-y10.1007/s10811-017-1162-y
[108] Hammed A. M., et al. Enzyme aided extraction of sulfated polysaccharides from Turbinaria turbinata brown seaweed. International Food Research Journal 2017:24(4):1660–1666.
[109] Vo Dinh T., Saravana P. S., Woo H. C., Chun B. S. Ionic liquid-assisted subcritical water enhances the extraction of phenolics from brown seaweed and its antioxidant activity. Separation and Purification Technology 2018:196:287–299. https://doi.org/10.1016/j.seppur.2017.06.00910.1016/j.seppur.2017.06.009
[111] Gereniu C. R. N., Saravana P. S., Chun B. S. Recovery of carrageenan from Solomon Islands red seaweed using ionic liquid-assisted subcritical water extraction. Separation and Purification Technology 2018:196:309–317. https://doi.org/10.1016/j.seppur.2017.06.05510.1016/j.seppur.2017.06.055
[112] Bozinou E., et al. Pulsed Electric Field Extraction and Antioxidant Activity Determination of Moringa oleifera Dry Leaves: A Comparative Study with Other Extraction Techniques. Beverages 2019:5(1):8. https://doi.org/10.3390/beverages501000810.3390/beverages5010008