Have a personal or library account? Click to login
Inverse Modelling of Climate Adaptive Building Shells. System Dynamics Approach Cover

Inverse Modelling of Climate Adaptive Building Shells. System Dynamics Approach

By: Toms Mols and  Andra Blumberga  
Open Access
|Sep 2020

References

  1. [1] U.S. Energy Information Administration (EIA). EIA projects 48% increase in world energy consumption by 2040. In Today in Energy. [Online]. [Accessed 12.03.2020]. Available: https://www.eia.gov/todayinenergy/detail.php?id=26212
  2. [2] European Commission. Energy efficient buildings [Online]. [Accessed 11.04.2020]. Available: https://ec.europa.eu/energy/en/topics/energy-efficiency/buildings
  3. [3] Loonen R. C. G. M. Climate Adaptive Building Shells What can we simulate? Master Sci. Thesis. 2009:3:6–11.
  4. [4] Wang T., et al. GHG emission reduction performance of state-of-the-art green buildings: Review of two case studies. Renewable and Sustainable Energy Reviews 2016:56:484–493. https://doi.org/10.1016/j.rser.2015.11.03710.1016/j.rser.2015.11.037
  5. [5] Bodach S., Lang W., Hamhaber J. Climate responsive building design strategies of vernacular architecture in Nepal. Energy and Buildings 2014:81:227–242. https://doi.org/10.1016/j.enbuild.2014.06.02210.1016/j.enbuild.2014.06.022
  6. [6] Laicane I., et al. Evaluation of Household Electricity Savings. Analysis of Household Electricity Demand Profile and User Activities. Energy Procedia 2015:72:285–292. https://doi.org/10.1016/j.egypro.2015.06.04110.1016/j.egypro.2015.06.041
  7. [7] Sousa J. Energy Simulation Software for Buildings: Review and Comparison. Computer Science 2012:6–7.
  8. [8] ESP-r. ESP-r, Multi-platform Building Energy Software Tool [Online]. [Accessed 22.04.2017]. Available: http://www.esru.strath.ac.uk/Programs/ESP-r_overview.htm
  9. [9] Loonen R. C. G. M., et al. Review of current status, requirements and opportunities for building performance simulation of adaptive facades. Journal of Building Performance Simulation 2016:10(2):203–223. https://doi.org/10.1080/19401493.2016.115230310.1080/19401493.2016.1152303
  10. [10] Loonen R. G. C. M., et al. Performance Simulation of Climate Adaptive Building Shells: Smart Energy Glass as a case study. Presented at the 8th International Conference on System Simulation in Buildings, Liege, Belgium, 2010.
  11. [11] Harish V. S. K. V., Kumar A. A review on modeling and simulation of building energy systems. Renewble and Sustainable Energy Reviews 2016:56:1272–1292. https://doi.org/10.1016/j.rser.2015.12.04010.1016/j.rser.2015.12.040
  12. [12] Loonen R. C. G. M., et al. Simulation-based support for product development of innovative building envelope components. Automation in Construction 2014:45:86–95. https://doi.org/10.1016/j.autcon.2014.05.00810.1016/j.autcon.2014.05.008
  13. [13] Blumberga A. Integrating systemic thinking into environmental policy. Riga: Riga Technical University, 2010. (in Latvian)
  14. [14] Powersim Studio 8 Academic (8.10.4916.6). Powersim Studio 8 Help. Building Blocks in Powersim Studio.
  15. [15] Kramer R., van Schijndel J., Schellen H. Inverse modeling of simplified hygrothermal building models to predict and characterize indoor climates. Building and Environment 2013:68:87–99. https://doi.org/10.1016/j.buildenv.2013.06.00110.1016/j.buildenv.2013.06.001
  16. [16] Favoino F., Overend M., Jin Q. The optimal thermo-optical properties and energy saving potential of adaptive glazing technologies. Applied Energy 2015:156:1–15. https://doi.org/10.1016/j.apenergy.2015.05.06510.1016/j.apenergy.2015.05.065
  17. [17] Andréasson N., Evgrafov A., Patriksson M. An Introduction to Optimization: Foundations and Fundamental Algorithms. 2005.
  18. [18] De Boer B., et al. Climate Adaptive Building Shells for the future – Optimization with an Inverse Modelling Approach. Proceedings of the ICEEE Summer Study 2011 2011:1413–1422.
  19. [19] Kova A. Using Metamodeling for the Analysis and Optimization of Dynamic Systems. Riga: RTU, 2012. (in Latvian)
  20. [20] Palonen M., Hamdy M., Hasan A. Mobo a new software for multi-objective building performance optimization. Proceedings of the Building Simulation 2013 – 13th International IBPSA Conference 2013:2567–2574.
  21. [21] Favoino F., Overend M. A simulation framework for the evaluation of next generation Responsive Building Envelope technologies. Energy Procedia 2015:78:2602–2607. https://doi.org/10.1016/j.egypro.2015.11.30210.1016/j.egypro.2015.11.302
  22. [22] Stephan L., Bastide A., Wurtz E. Optimizing opening dimensions for naturally ventilated buildings. Applied Energy 2011:88(8):2791–2801. https://doi.org/10.1016/j.apenergy.2010.12.03910.1016/j.apenergy.2010.12.039
  23. [23] Kasinalis C., et al. Framework for assessing the performance potential of seasonally adaptable facades using multi-objective optimization. Energy in Buildings 2014:79:106–113. https://doi.org/10.1016/j.enbuild.2014.04.04510.1016/j.enbuild.2014.04.045
  24. [24] Mumovic D., Santamouris M. A Handbook of Sustainable Building Design and Engineering: An Integrated Approach to Energy, Health and Operational Performance. International Journal of Sustainability in Higher Education 2009:10(4):474.
  25. [25] Taal A., Itard L. Shell Optimization of a Climate Adaptive Greenhouse Using Inverse Modeling. Proceedings of the Building Simulation 2013 – 13th International IBPSA Conference 2013:2250–2255.10.26868/25222708.2013.2279
DOI: https://doi.org/10.2478/rtuect-2020-0064 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 170 - 177
Published on: Sep 23, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Toms Mols, Andra Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.