Have a personal or library account? Click to login
Assessment of Energy Sustainability in Statistical Regions of Latvia using Energy Sustainability Index Cover

Assessment of Energy Sustainability in Statistical Regions of Latvia using Energy Sustainability Index

Open Access
|Sep 2020

References

  1. [1] United Nations. Transforming our World: the 2030 Agenda for Sustainable Development. New York: UN, 2015.
  2. [2] European Comission. What is the European Green Deal? 2019. [Online]. [Accessed 01.02.2020]. Available: https://ec.europa.eu/info/sites/info/files/european-green-deal-communication_en.pdf
  3. [3] Iddrisu I., Bhattacharyya S. C. Sustainable energy development index: A multi-dimensional indicator for measuring sustainable energy development. Renewable and Sustainable Energy Reviews 2015:50:513–530. https://doi.org/10.1016/j.rser.2015.05.03210.1016/j.rser.2015.05.032
  4. [4] Blumberga D., et al. Energy, Bioeconomy, Climate Changes and Environment Nexus. Environmental and Climate Technologies 2019:23(3):370–392. https://doi.org/10.2478/rtuect-2019-010210.2478/rtuect-2019-0102
  5. [5] Prodanuks T., Blumberga D. Methodology of municipal energy plans. Priorities for sustainability. Energy Procedia 2018:147:594–599. https://doi.org/10.1016/j.egypro.2018.07.07610.1016/j.egypro.2018.07.076
  6. [6] Štreimikienė D. Review of internalization of externalities and dynamics of atmospheric emissions in energy sector of Baltic States. Renewable and Sustainable Energy Reviews 2017:70:1131–1141. https://doi.org/10.1016/j.rser.2016.12.01710.1016/j.rser.2016.12.017
  7. [7] Brown M. A., Sovacool B. K. Developing an ‘energy sustainability index’. Interdisciplinary Science Reviews 2007:32(4):335–349. https://doi.org/10.1179/030801807X21179310.1179/030801807X211793
  8. [8] European Commission. How has the EU progressed towards the SDGs? Eurostat [Online]. [Accessed 02.2020]. Available: https://ec.europa.eu/eurostat/web/sdi/key-findings
  9. [9] Covenant of Mayors for Climate & Energy [Online]. [Accessed 06.02.2020]. Available: https://www.covenantofmayors.eu/en/
  10. [10] Marquez-Ballesteros M.-J., et al. Measuring urban energy sustainability and its application to two Spanish cities: Malaga and Barcelona. Sustainable Cities and Society 2019:45:335–347. https://doi.org/10.1016/j.scs.2018.10.04410.1016/j.scs.2018.10.044
  11. [11] Doukas H., et al. Assessing energy sustainability of rural communities using Principal Component Analysis. Renewable and Sustainable Energy Reviews 2012:16(4):1949–1957. https://doi.org/10.1016/j.rser.2012.01.01810.1016/j.rser.2012.01.018
  12. [12] Kuznecova I., et al. Calculation Framework of Household Sustainability Index for Heat Generation. Energy Procedia 2017:113:476–481. https://doi.org/10.1016/j.egypro.2017.04.04310.1016/j.egypro.2017.04.043
  13. [13] Cîrstea S. D., et al. Evaluating Renewable Energy Sustainability by Composite Index. Sustainability 2018:10(3):811. https://doi.org/10.3390/su1003081110.3390/su10030811
  14. [14] Nakthong V., Kubaha K. Development of a Sustainability Index for an Energy Management System in Thailand. Sustanability 2019:11(17):4587. https://doi.org/10.3390/su1117458710.3390/su11174587
  15. [15] Narula K., et al. Sustainable energy security for India: An assessment of the energy supply sub-system. Energy Policy 2017:103:127–144. https://doi.org/10.1016/j.enpol.2017.01.00110.1016/j.enpol.2017.01.001
  16. [16] Gómez-Camacho C. E. Ruggeri B. Energy Sustainability Analysis (ESA) of Energy-Producing Processes: A Case Study on Distributed H2 Production. Sustainability 2019:11(18):4911. https://doi.org/10.3390/su1118491110.3390/su11184911
  17. [17] Altintas K., et al. An Extended GRA Method Integrated with Fuzzy AHP to Construct a Multidimensional Index for Ranking Overall Energy Sustainability Performances. Sustainability 2020:12(4):1602. https://doi.org/10.3390/su1204160210.3390/su12041602
  18. [18] Prashar A. Towards sustainable development in industrial small and Medium-sized Enterprises: An energy sustainability approach. Journal of Cleaner Production 2019:235:977–996. https://doi.org/10.1016/j.jclepro.2019.07.04510.1016/j.jclepro.2019.07.045
  19. [19] Muniz N. R., et al. Tools for Measuring Energy Sustainability: A Comparative Review. Energies 2020:13:2366. https://doi.org/10.3390/en1309236610.3390/en13092366
  20. [20] Krajnc D., Glavi P. A model for integrated assessment of sustainable development. Resources, Conservation and Recycling 2005:43(2):189–208. https://doi.org/10.1016/j.resconrec.2004.06.00210.1016/j.resconrec.2004.06.002
  21. [21] Cabinet of Ministers. Regulation No 271 of 28 April 2004. On the statistical regions of the Republic of Latvia and the administrative units contained therein. (in Latvian)
  22. [22] Cabinet of Ministers. Regulation No 42 of 23 January 2018. Methodology for calculating greenhouse gas emissions. (in Latvian)
  23. [23] LEGMC. Pprocedure for completing the data of the national statistical report “No.2-Air – Report on air protection”. (in Latvian)
  24. [24] Ghersi F. Hybrid bottom-up/top-down energy and economy outlooks: A review of IMACLIM-S experiments. Frontiers in Environmental Science 2015:3:74. https://doi.org/10.3389/fenvs.2015.0007410.3389/fenvs.2015.00074
  25. [25] Aycateknik. Boilers [Online]. [Accessed 05.02.2020]. Available: https://www.aycateknik.com/kotel-otoplenija-na-mazute (in Latvian)
  26. [26] Bosh. Condensing type gas appliances [Online]. [Accessed 25.08.2020]. Available: https://www.junkers.lv/files/Kondensacijas_tipa_gazes_iekartas_LV_(TT_1903_LV)_LV.pdf (in Latvian)
  27. [27] Solitherm. Heating furnace [Online]. [Accessed 05.02.2020]. Available: http://www.sadzivessantehnika.lv/assets/doc/Solitherm_info.pdf
  28. [28] European Environment Agency. CO2 emission intensity [Online]. [Accessed 03.01.2020]. Available: https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-5#tab-googlechartid_chart_11_filters={“rowFilters”%3A{}%3B”columnFilters”%3A{“pre_config_ugeo%22%3A%5B%22EuropeanUnion(currentcomposition)”%3B”Latvia%22%5D%7D%7D
  29. [29] Saaty, T. L. Analytical Hierarchy Process: Planning, Priority Setting, Resource allocation. New York: McGraw-Hill, 1980.
  30. [30] Samal R. K., Kansal M. L. Sustainable development contribution assessment of renewable energy projects using AHP and compromise programming techniques. 2015 International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE) 2015:1–6. https://doi.org/10.1109/EPETSG.2015.751009610.1109/EPETSG.2015.7510096
DOI: https://doi.org/10.2478/rtuect-2020-0063 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 160 - 169
Published on: Sep 23, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Dzintra Slišāne, Gatis Gaumigs, Dace Lauka, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.