Have a personal or library account? Click to login
Methodology of Indicative Analysis to Determine the Municipal Units for Implementation of the Energy-Saving Strategy Cover

Methodology of Indicative Analysis to Determine the Municipal Units for Implementation of the Energy-Saving Strategy

Open Access
|Sep 2020

References

  1. [1] Ziemele J., Gravelsins A., Blumberga A., Blumberga D. The effect of energy efficiency improvements on the development of 4th generation district heating. Energy Procedia 2016:95:522–527. https://doi.org/10.1016/j.egypro.2016.09.07910.1016/j.egypro.2016.09.079
  2. [2] Vigants E., Prodanuks T., Vigants G., Veidenberg I., Blumberga D. Modelling of Technological Solutions 4th Generation DH Systems. Environmental and Climate Technologies 2017:20(1):5–23. https://doi.org/10.1515/rtuect-2017-000710.1515/rtuect-2017-0007
  3. [3] Volkova A., Masatin V., Siirde A. Methodology for evaluating the transition process dynamics towards 4th generation district heating networks. Energy 2018:150:253–261. https://doi.org/10.1016/j.energy.2018.02.12310.1016/j.energy.2018.02.123
  4. [4] Lund H., et al. The status of 4th generation district heating: Research and results. Energy 2018:164:147–159. https://doi.org/10.1016/j.energy.2018.08.20610.1016/j.energy.2018.08.206
  5. [5] Cimdina G., Timma L., Veidenbergs I., Blumberga D. Environmental and Climate Technologies Methodologies Used for Scaling-up From a Single Energy Production Unit to State Energy Sector. Environmental and Climate Technologies 2015:15(1):5–21. https://doi.org/10.1515/rtuect-2015-000210.1515/rtuect-2015-0002
  6. [6] Blumberga A., Lauka D., Barisa A., Blumberga D. Modelling the Baltic power system till 2050. Energy Conversion and Management 2016:107:67–75. https://doi.org/10.1016/j.enconman.2015.09.00510.1016/j.enconman.2015.09.005
  7. [7] Pakere I., Lauka D., Blumberga D. Estimation of Carbon Emission Reduction from Upgrading the DH Network to the 4th Generation. Multivariate Linear Regression Model. Environmental and Climate Technologies 2019:23(2):64–73. https://doi.org/10.2478/rtuect-2019-005510.2478/rtuect-2019-0055
  8. [8] Polikarpova I., Lauka D., Blumberga D., Vigants E. Multi-Criteria Analysis to Select Renewable Energy Solution for District Heating System. Environmental and Climate Technologies 2019:23(3):101–109. https://doi.org/10.2478/rtuect-2019-008210.2478/rtuect-2019-0082
  9. [9] Mednikova E., Stennikov V., Postnikov I., Penkovskii A. Development Features of Heat Power Industry Legislation in Russia. Environmental and Climate Technologies 2019:23(2):22–35. https://doi.org/10.2478/rtuect-2019-005210.2478/rtuect-2019-0052
  10. [10] Nielsena B. F., Baerb D., Lindkvista C. Identifying and supporting exploratory and exploitative models of innovation in municipal urban planning; key challenges from seven Norwegian energy ambitious neighborhood pilots. Technological Forecasting & Social Change 2019:142:142–153. https://doi.org/10.1016/j.techfore.2018.11.00710.1016/j.techfore.2018.11.007
  11. [11] Institutional pathways to municipal energy companies in the UK: Realising co-benefits to mitigate climate change in cities. Journal of Cleaner Production 2018:182:727–736. https://doi.org/10.1016/j.jclepro.2018.02.00210.1016/j.jclepro.2018.02.002
  12. [12] Neves D., Baptista P., Simoes M., Silva C. A., Figueira J.R. Designing a municipal sustainable energy strategy using multi-criteria decision analysis. Journal of Cleaner Production 2018:176:251–260. https://doi.org/10.1016/j.jclepro.2017.12.11410.1016/j.jclepro.2017.12.114
  13. [13] Ziemele J., Gravelsins A., Blumberga A., Blumberga D. Combining energy efficiency at source and at consumer to reach 4th generation district heating: Economic and system dynamics analysis. Energy 2017:137:595–606. https://doi.org/10.1016/j.energy.2017.04.12310.1016/j.energy.2017.04.123
  14. [14] Ziemele J., Gravelsins A., Blumberga A., Blumberga D. Decomposition analysis of district heating system based on complemented Kaya identity. Energy Procedia 2015:75:1229–1234. https://doi.org/10.1016/j.egypro.2015.07.16410.1016/j.egypro.2015.07.164
  15. [15] Vakulenko I., Myroshnychenko I. Approaches to the Organization of the Energy Efficient Activity at the Regional Level in the Context of Limited Budget Resources during the Transformation of Energy Market Paradigm. Environmental and Climate Technologies 2015:15(1):59–76. https://doi.org/10.1515/rtuect-2015-000610.1515/rtuect-2015-0006
  16. [16] Prodanuks T., Blumberga D. Methodology of municipal energy plans. Priorities for sustainability. Energy Procedia 2018:147:594–599. https://doi.org/10.1016/j.egypro.2018.07.07610.1016/j.egypro.2018.07.076
  17. [17] Kavals E., Klavnieks K., Gusca J., Blumberga D. Indicator analysis of integrated municipal waste management system. Case of study of Latvia. Energy Procedia 2018:147:227–234. https://doi.org/10.1016/j.egypro.2018.07.08610.1016/j.egypro.2018.07.086
  18. [18] Long-term targeted program “Energy-saving and enhancement of the energy performances on the territory of Irkutsk region in 2011–2015 and for the period till 2020”. [Online]. [Accessed 10.11.2019]. Available: https://gisee.ru/law/programs/47135
  19. [19] Pohekar S. D., Ramachandran M. Application of multi-criteria decision making to sustainable energy planning – A review. Renewable and Sustainable Energy Reviews 2004:8(4):365–381. https://doi.org/10.1016/j.rser.2003.12.00710.1016/j.rser.2003.12.007
  20. [20] Løken, E. Use of multicriteria decision analysis methods for energy planning problems. Renewable and Sustainable Energy Reviews. 2007:11(7):1584–1595. https://doi.org/10.1016/j.rser.2005.11.00510.1016/j.rser.2005.11.005
  21. [21] Wang, J. J., Jing, Y. Y., Zhang, C. F., Zhao, J. H. Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews 2009:13(9):2263–2278. https://doi.org/10.1016/j.rser.2009.06.02110.1016/j.rser.2009.06.021
  22. [22] Adem Esmail B., Geneletti D. Multi-criteria decision analysis for nature conservation: A review of 20 years of applications. Methods in Ecology and Evolution 2018:9(1):42–53. https://doi.org/10.1111/2041-210X.1289910.1111/2041-210X.12899
  23. [23] Larichev O. I. Theory and decision-making methods: textbook. Moscow: Logos, 2002.
  24. [24] Mikoni S. V. Multicriteria choice on a finite set of alternatives. St. Petersburg: Lan, 2009.
  25. [25] Hwang C. L., Yoon K. Methods for multiple attribute decision making. In Multiple attribute decision making. Berlin, Heidelberg: Springer, 1981. https://doi.org/10.1007/978-3-642-48318-910.1007/978-3-642-48318-9
  26. [26] Ishizaka A., Nemery P. Multi-Criteria Decision Analysis. Methods and Software. Chichester (United Kingdom): John Wiley & Sons Inc, 2013. https://doi.org/10.1002/978111864489810.1002/9781118644898
  27. [27] Jahanshahloo G. R., Lotfi F. H., Izadikhah M. An algorithmic method to extend TOPSIS for decision-making problems with interval data. Applied Mathematics and Computation. 2006:175(2):1375–1384. https://doi.org/10.1016/j.amc.2005.08.04810.1016/j.amc.2005.08.048
  28. [28] Integral assessment of social stability in municipal units of the Angara area. Analytical note. Irkutsk: Irkutskstat, 2017.
  29. [29] Budgets of municipal units of Irkutsk region. Analytical note. Irkutsk: Irkutskstat, 2017.
DOI: https://doi.org/10.2478/rtuect-2020-0059 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 115 - 123
Published on: Sep 23, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Valery Stennikov, Ivan Postnikov, Olga Edeleva, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.