Have a personal or library account? Click to login
Effect of Combining Different Substrates and Inoculum Sources on Bioelectricity Generation and COD Removal in a Two-Chambered Microbial FuelCell: A Preliminary Investigation Cover

Effect of Combining Different Substrates and Inoculum Sources on Bioelectricity Generation and COD Removal in a Two-Chambered Microbial FuelCell: A Preliminary Investigation

Open Access
|Sep 2020

References

  1. [1] Logan B. E., et al. Microbial Fuel Cells: Methodology and Technology. Environmental Science and Technology 2006:40:5181–5192. https://doi.org/10.1021/es060501610.1021/es060501616999087
  2. [2] Blumberga D., et al. Energy, Bioeconomy, Climate Changes and Environment Nexus. Environmental and Climate Technologies 2019:23(3):370–392. https://doi.org/10.2478/rtuect-2019-010210.2478/rtuect-2019-0102
  3. [3] Lovley D. R. Microbial Fuel Cells: Novel Microbial Physiologies and Engineering Approaches. Current Opinion in Biotechnology 2006:17(3):327–332. https://doi.org/10.1016/j.copbio.2006.04.00610.1016/j.copbio.2006.04.00616679010
  4. [4] Nitisoravut R., & Regmi R. Plant Microbial Fuel Cells: A Promising Biosystems Engineering. Renewable and Sustainable Energy Reviews 2017:76:81–89. https://doi.org/10.1016/j.rser.2017.03.064.10.1016/j.rser.2017.03.064
  5. [5] Logan B. Microbial Fuel Cells. Hoboken: John Wiley and Sons, Inc., 2008.
  6. [6] Du Z., Li H., & Gu T. A State of the Art Review on Microbial Fuel Cells: A Promising Technology for Waste Water Treatment and Bioenergy. Biotechnology Advances 2007:25(5):464–482. https://doi.org/10.1016/j.biotechadv.2007.05.00410.1016/j.biotechadv.2007.05.00417582720
  7. [7] Rahimnejad M. et al. Thionine Increases Electricity Generation from Microbial Fuel Cell Using Saccharomyces cerevisiae and Exoelectrogenic Mixed Culture. Journal of Microbiology 2012:50:575–580. https://doi.org/10.1007/s12275-012-2135-010.1007/s12275-012-2135-022923104
  8. [8] Rahimnejad M. et al. Microbial Fuel Cell as New Technology for Bioelectricity Generation: A Review. Alexandria Engineering Journal 2015:54(3):745–756. https://doi.org/10.1016/j.aej.2015.03.03110.1016/j.aej.2015.03.031
  9. [9] Kim B., Chang I. S., & Gadd G. M. Challenges in Microbial Fuel Cell Development and Operation. Applied Microbiology and Biotechnology 2007:76:485–494. https://doi.org/10.1007/s00253-007-1027-410.1007/s00253-007-1027-417593364
  10. [10] Strade E., & Kalinina D. Cost Effective method for Toxicity Screening of Pharmaceutical Wastewater Containing Inorganic Salts and Harmful Compounds. Environmental and Climate Technologies 2019:23(1):52–63. https://doi.org/10.2478/rtuect-2019-000410.2478/rtuect-2019-0004
  11. [11] Mathuriya A. S., & Sharma V. N. Bioelectricity Production from Various Wastewaters Through Microbial Fuel Cell Technology. Journal of Biochemical Technology 2009:2:133–137.
  12. [12] Priedniece V., et al. Bioproducts from Potatoes. A Review. Environmental and Climate Technologies 2017:21:18–27. https://doi.org/10.1515/rtuect-2017-001310.1515/rtuect-2017-0013
  13. [13] Sekoai P. T., & Gueguim Kana E. B. Semi-pilot Scale Production of Hydrogen from Organic Fraction of Solid Municipal Waste and Electricity Generation from Process Effluents. Biomass and Bioenergy 2014:60:156–163. https://doi.org/10.1016/j.biombioe.2013.11.00810.1016/j.biombioe.2013.11.008
  14. [14] Khan M., Bhattacharjee R., & Amin M. S. A. Performance of the Salt Bridge Based Microbial Fuel Cell. International Journal of Engineering and Technology 2012:1:115–123. https://doi.org/10.14419/ijet.v1i2.7810.14419/ijet.v1i2.78
  15. [15] Tharali M., & Sain N. A., Osborne W. Microbial Fuel Cells in Bioelectricity Production. Frontiers in Life Science 2016:9(4):252–266. https://doi.org/10.1080/21553769.2016.123078710.1080/21553769.2016.1230787
  16. [16] Fogler H. Elements of Chemical Reaction Engineering 4th ed. New Jersey: Pearson Education Inc., 2006.
  17. [17] Zhao F. et al. Challenges and Constraints of Using Oxygen Cathodes in Microbial Fuel Cells. Environmental Science and Technology 2006:40:5193–5199. https://doi.org/10.1021/es060332p10.1021/es060332p16999088
  18. [18] Mathuriya A. S., & Sharma, V. N. Treatment of Brewery Wastewater and Production of Electricity Through Microbial Fuel Cell Technology. International Journal of Biotechnology and Biochemistry 2010:6:71–80.
  19. [19] Gil G. C. et al. Operational Parameters Affecting the Performance of a Mediator-less Microbial Fuel Cell. Biosensors and Bioelectronics 2003:18:327–334. https://doi.org/10.1017/S0956-5663(02)00110-0
  20. [20] Liu H., Cheng S., & Logan B. E. Power Generation in Fed-Batch Microbial Fuel Cells as a Function of Ionic Strength, Temperature, and Reactor Configuration. Environmental Science and Technology 2005:39:5488–5493. https://doi.org/10.1021/es050316c10.1021/es050316c16082985
  21. [21] Logan B. E., & Regan J. M. Electricity-producing bacterial communities in microbial fuel cells. TRENDS in Microbiology 2006:14(12):512–518. https://doi.org/10.1016/j.tim.2006.10.00310.1016/j.tim.2006.10.00317049240
DOI: https://doi.org/10.2478/rtuect-2020-0055 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 67 - 78
Published on: Sep 23, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Joshua Marks, Johan Kirkel, Patrick Sekoai, Christopher Enweremadu, Michael Daramola, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.