[1] Jambeck J. R., Geyer R., Wilcox C., Siegler T. R., Perryman M., Andrady A., Narayan R., & Law K. L. Plastic waste inputs from land into the ocean. Science 2015:347.10.1126/science.126035225678662
[2] Macrae F. Eight million tons of plastic is dumped at sea each year... that’s five whole bags-full for every foot of the world’s coastline. [Online]. [Accessed 04.02.2020]. Available: https://www.dailymail.co.uk/sciencetech/article-2951256/Study-World-dumps-8-8-million-tons-plastics-oceans.html
[5] Kubule A., Klavenieks K., Veseree R., & Blumberga D. Towards Efficient Waste Management in Latvia: An Empirical Assessment of Waste Composition. Environment and Climate Technologies 2019:23(2):114–120. https://doi.org/10.2478/rtuect-2019-005910.2478/rtuect-2019-0059
[8] Vaverkova M., Adamcová D., & Zloch J. How do degradable/biodegradable plastic materials decompose in home composting environment? Journal of Ecological Engineering 2014:15(4):82–89. https://doi.org/10.12911/22998993.1125461
[11] Elanchezhian C., Ramnath B. V., Ramakrishnan G., Rajendrakumar M., Naveenkumar V., & Saravanakumar M. K. Review on mechanical properties of natural fiber composites. In Proceedings of International Conference on Materials, Minerals and Energy (PMME) 2018:5(1):1785–1790. https://doi.org/10.1016/j.matpr.2017.11.27610.1016/j.matpr.2017.11.276
[13] Olt J., Soots K., Olt A., & Rooni V. Exploration of the possibilities for the production of tableware from the bran of various cereals. Proceedings of the 9th International Scientific Conference Rural Development, 2019. http://doi.org/10.15544/RD.2019.020.10.15544/RD.2019.020
[16] Willett K., & Howell B. Using local invasive species and flora to manufacture collagen based biodegradable plastic tableware. In Proceedings of the 21st International Conference on Engineering Design (ICED17), Vancouver, Canada, 2017.
[19] Soots K., Olt A., & Olt J. Manufacturing technology and mechanical properties of biodegradable tableware made from cereal bran. Presented at 47th Int. symposium on Actual Tasks on Agricultural Engineering, Opatija, Croatia, 2019.
[23] ASTM D6400 – 12. Standard Specification for Labeling of Plastics Designed to be Aerobically Composted in Municipal or Industrial Facilities. [Online]. [Accessed 18.07.2019]. Available: https://www.astm.org/Standards/D6400.htm
[24] ASTM D6868 – 17. Standard Specification for Labeling of End Items that Incorporate Plastics and Polymers as Coatings or Additives with Paper and Other Substrates Designed to be Aerobically Composted in Municipal or Industrial Facilities, 2017. [Online]. [Accessed 1.07.2019]. Available: https://www.astm.org/Standards/D6868.htm
[25] DIN EN 13432. Requirements for packaging recoverable through composting and biodegradation. European Standards. 2000. [Online]. [Accessed 18.07.2019]. Available: https://www.en-standard.eu/din-en-13432-requirements-for-packaging-recoverable-through-composting-and-biodegradation-test-scheme-and-evaluation-criteria-for-the-final-acceptance-of-packaging-english-version-of-din-en-13432/?gclid=EAIaIQobChMIi63nsCN3gIViuiaCh0vPgNdEAAYASAAEgJOavD_BwE
[26] ISO 14851:1999. Determination of the ultimate aerobic biodegradability of plastic materials in an aqueous medium - Method by measuring the oxygen demand in a closed respirometer, 1995. (corrected version 2003)
[27] Fischer U., Gomeringer R., Heinzler M., Kilgus R., Näher F., Oesterle S., Paetzold H., & Stephan A. Mechanical and Metal Trades Handbook. Germany: Verlag Europa Lehrmittel, 2010.