Have a personal or library account? Click to login
Perennial Grasses as a Substrate for Bioethanol Production Cover

Perennial Grasses as a Substrate for Bioethanol Production

By: Merlin Raud and  Timo Kikas  
Open Access
|Sep 2020

References

  1. [1] Directive 2015/1513/EU of the European Parliament and of the Council of 9 September 2015 amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewable sources. Official Journal of the European Union 2015: L 239/1.
  2. [2] Directive 2018/2001/EU of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources. Official Journal of the European Union 2018: L 328/82.
  3. [3] Ghosh S., Chowdhury R., & Bhattacharya P. Sustainability of cereal straws for the fermentative production of second generation biofuels: A review of the efficiency and economics of biochemical pretreatment processes. Applied Energy 2017:198:284–298. https://doi.org/10.1016/j.apenergy.2016.12.09110.1016/j.apenergy.2016.12.091
  4. [4] Chang F.-C., Lin L.-D., Ko C.-H., Hsieh H.-C., Yang B.-Y., Chen W.-H., & Hwang W.-S. Life cycle assessment of bioethanol production from three feedstocks and two fermentation waste reutilization schemes. Journal of Cleaner Production 2017:143:973–979. https://doi.org/10.1016/j.jclepro.2016.12.02410.1016/j.jclepro.2016.12.024
  5. [5] Sainju U. M., Singh H. P., & Singh B. P. Soil Carbon and Nitrogen in Response to Perennial Bioenergy Grass, Cover Crop and Nitrogen Fertilization. Pedosphere 2017:27(2):223–235. https://doi.org/10.1016/S1002-0160(17)60312-610.1016/S1002-0160(17)60312-6
  6. [6] Kizeková M., Hopkins A., Kanianska R., Makovníková J., Pollák Š., & Pálka B. Changes in the area of permanent grasslands and its implications for the provision of bioenergy: Slovakia as a case study. Grass Forage Science 2018:73:218–232. https://doi.org/10.1111/gfs.1233310.1111/gfs.12333
  7. [7] Bhutto A. W., Qureshi K., Harijan K., Abro R., Abbas T., Bazmi A. A., Karim S., & Yu G. Insight into progress in pre-treatment of lignocellulosic biomass. Energy 2017:122:724–745. https://doi.org/10.1016/j.energy.2017.01.00510.1016/j.energy.2017.01.005
  8. [8] Raud M., Kikas T., Sippula O., & Shurpali N. J. Potentials and challenges in lignocellulosic biofuel production technology. Renewable and Sustainable Energy Reviews 2019:111:44–56. https://doi.org/10.1016/j.rser.2019.05.02010.1016/j.rser.2019.05.020
  9. [9] Raud M., Olt J., & Kikas T. N2 explosive decompression pretreatment of biomass for lignocellulosic ethanol production. Biomass and Bioenergy 2016:90:1–6. https://doi.org/10.1016/j.biombioe.2016.03.03410.1016/j.biombioe.2016.03.034
  10. [10] Tutt M., Raud M., Kahr H., Pointner M., Olt J., & Kikas T. Nitrogen explosion pretreatment of lignocellulosic material for bioethanol production. Energy Sources Part A: Recovery, Util. Environ. Eff. 2016: 38(12):1785–1789. https://doi.org/10.1080/15567036.2014.100295010.1080/15567036.2014.1002950
  11. [11] Raud M., Krennhuber K., Jäger A., & Kikas T. Nitrogen explosive decompression pre-treatment: An alternative to steam explosion. Energy 2019:177:175–182. https://doi.org/10.1016/j.energy.2019.04.07110.1016/j.energy.2019.04.071
  12. [12] Raud M., Mitt M., Oja T., Olt J., Orupõld K., & Kikas T. The utilisation potential of urban greening waste: Tartu case study. Urban Forestry & Urban Greening 2017:21:96–101. https://doi.org/10.1016/j.ufug.2016.11.01410.1016/j.ufug.2016.11.014
  13. [13] Raud M., Rooni V., Kikas T., Explosive decompression pretreatment: Nitrogen vs. compressed air. Agronomy Research 2016:14(2):569–578.
  14. [14] Sluiter A., Hames B., Ruiz R., Scarlata C., Sluiter J., & Templeton D. Determination of Ash in Biomass. Laboratory Analytical Procedure (LAP). Technical Report NREL/TP-510-42622, 2005.
  15. [15] Han M., Kang K. E., Kim Y., & Choi G.-W. High efficiency bioethanol production from barley straw using a continuous pretreatment reactor. Process Biochemistry 2013:48(3):488–495. https://doi.org/10.1016/j.procbio.2013.01.00710.1016/j.procbio.2013.01.007
  16. [16] Kikas T., Tutt M., Raud M., Alaru M., Lauk R., & Olt J. Basis of Energy Crop Selection for Biofuel Production: Cellulose vs. Lignin. International Journal of Green Energy 2016:13(1):49–54. https://doi.org/10.1080/15435075.2014.90935910.1080/15435075.2014.909359
  17. [17] Balat M. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management 2011:52(2):858–875. https://doi.org/10.1016/j.enconman.2010.08.01310.1016/j.enconman.2010.08.013
  18. [18] Talebnia F., Karakashev D., & Angelidaki I. Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresource Technology 2010:101(13):4744–4753. https://doi.org/10.1016/j.biortech.2009.11.08010.1016/j.biortech.2009.11.08020031394
  19. [19] Conde-Mejía C., Jiménez-Gutiérrez A., & El-Halwagi M. A comparison of pretreatment methods for bioethanol production from lignocellulosic materials. Process Safety and Environmental Protection 2012:90(3):189–202. https://doi.org/10.1016/j.psep.2011.08.00410.1016/j.psep.2011.08.004
  20. [20] Raud M., Rooni V., & Kikas T. The Efficiency of Nitrogen and Flue Gas as Operating Gases in Explosive Decompression Pretreatment. Energies 2018:11(8):2074. https://doi.org/10.3390/en1108207410.3390/en11082074
  21. [21] Heinsoo K., Melts I., Sammul M., & Holm B. The potential of Estonian semi-natural grasslands for bioenergy production. Agriculture, Ecosystems & Environment 2010:137(1–2):86–92. https://doi.org/10.1016/j.agee.2010.01.00310.1016/j.agee.2010.01.003
  22. [22] Tutt M., Kikas T., & Olt J. Influence of harvesting time on biochemical composition and glucose yield from hemp. Agronomy Research 2013:11(1):215–220.
  23. [23] Samuel R., Cao S., Das B. K., Hu, F., Pu, Y., & Ragauskas, A. J. Investigation of the fate of poplar lignin during autohydrolysis pretreatment to understand the biomass recalcitrance. RSC Adv. 2013:3(16):5305–5309. https://doi.org/10.1039/c3ra40578h10.1039/c3ra40578h
  24. [24] Oliveira F. M. V., Pinheiro I. O., Souto-Maior A. M., Martin C., Gonçalves A. R., & Rocha G. J. M. Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products. Bioresource Technology 2013:130:168–173. https://doi.org/10.1016/j.biortech.2012.12.03010.1016/j.biortech.2012.12.03023306125
  25. [25] Akanksha K., Sukumaran R. K., Pandey A., Rao S. S., & Binod P. Material balance studies for the conversion of sorghum stover to bioethanol. Biomass and Bioenergy 2016:85:48–52. https://doi.org/10.1016/j.biombioe.2015.11.02710.1016/j.biombioe.2015.11.027
  26. [26] Aunina Z., Bazbauers G., & Valters K. Feasibility of Bioethanol Production From Lignocellulosic Biomass. Environmental and Climate Technologies 2010:4(1):11–15. https://doi.org/10.2478/v10145-010-0011-x10.2478/v10145-010-0011-x
DOI: https://doi.org/10.2478/rtuect-2020-0052 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 32 - 40
Published on: Sep 23, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Merlin Raud, Timo Kikas, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.