Have a personal or library account? Click to login
Thermal Comfort Evaluation of Offices Integrated Into an Industrial Building. Case Study of the Basque Country Cover

Thermal Comfort Evaluation of Offices Integrated Into an Industrial Building. Case Study of the Basque Country

Open Access
|Sep 2020

References

  1. [1] Wagner A., et al. Thermal comfort and workplace occupant satisfaction-Results of field studies in German low energy office buildings. Energy and Buildings 2007:39(7):758–769. https://doi.org/10.1016/j.enbuild.2007.02.01310.1016/j.enbuild.2007.02.013
  2. [2] Alajmi A. F., Baddar F. A., Bourisli R. I. Thermal comfort assessment of an office building served by under-floor air distribution (UFAD) system - A case study. Building and Environment 2015:85:153–159. https://doi.org/10.1016/j.buildenv.2014.11.02710.1016/j.buildenv.2014.11.027
  3. [3] De Vecchi, R., Candido C., de Dear R., Lamberts R. Thermal comfort in office buildings: Findings from a field study in mixed-mode and fully-air conditioning environments under humid subtropical conditions. Building and Environment 2017:123:672–683. https://doi.org/10.1016/j.buildenv.2017.07.02910.1016/j.buildenv.2017.07.029
  4. [4] Rupp R. F., Ghisi, E. Predicting thermal comfort in office buildings in a Brazilian temperate and humid climate. Energy and Buildings 2017:144:152–166. https://doi.org/10.1016/j.enbuild.2017.03.03910.1016/j.enbuild.2017.03.039
  5. [5] Gladyszewska-Fiedoruk K. Survey Research of Selected Issues the Sick Building Syndrome (SBS) in an Office Building, Environmental and Climate Technologies 2019:23(2):1–8. https://doi.org/10.2478/rtuect-2019-005010.2478/rtuect-2019-0050
  6. [6] Katafygiotou M. C., Serghides D. K. Thermal comfort of a typical secondary school building in Cyprus. Sustainable Cities and Society 2014:13:303–312. https://doi.org/10.1016/j.scs.2014.03.00410.1016/j.scs.2014.03.004
  7. [7] Jindal A. Thermal comfort study in naturally ventilated school classrooms in composite climate of India. Building and Environment 2018:142:34–46. https://doi.org/10.1016/j.buildenv.2018.05.05110.1016/j.buildenv.2018.05.051
  8. [8] Yang B., Olofsson T., Wang F., Lu W. Thermal comfort in primary school classrooms: A case study under subarctic climate area of Sweden. Building and Environment 2018:135:237–245. https://doi.org/10.1016/j.buildenv.2018.03.01910.1016/j.buildenv.2018.03.019
  9. [9] Becker R., Paciuk M. Thermal comfort in residential buildings - Failure to predict by Standard model. Building and Environment 2009:44(5):948–960. https://doi.org/10.1016/j.buildenv.2008.06.01110.1016/j.buildenv.2008.06.011
  10. [10] Peeters L., Dear R. de Hensen J., D’haeseleer W. Thermal comfort in residential buildings: Comfort values and scales for building energy simulation. Applied Energy 2009:86(5):772–780. https://doi.org/10.1016/j.apenergy.2008.07.01110.1016/j.apenergy.2008.07.011
  11. [11] Yu W., Li B., et al. A study of thermal comfort in residential buildings on the Tibetan Plateau, China. Building and Environment 2017:119:71–86. https://doi.org/10.1016/j.buildenv.2017.04.00910.1016/j.buildenv.2017.04.009
  12. [12] Eustat. Euskal Estatistika Erakundea. Panorama de la Industria Vasca 2018. (Basque Statistical Institute. Panorama of the BAsque Industry 2018.) [Online]. [Accessed 08.04.2020]. Available: https://es.eustat.eus/elementos/ele0015400/Panorama_de_la_Industria_Vasca/inf0015432_c.pdf (in Basque)
  13. [13] Albatayneh A., Alterman D., Page A., Moghtaderi B. The Significance of Building Design for the Climate. Environmental and Climate Technologies 2018:22:1:165–178. https://doi.org/10.2478/rtuect-2018-001110.2478/rtuect-2018-0011
  14. [14] Government of Spain. Ministry of Fomento, “Spanish Technical Building Code, basic document DB-HE ‘Energy saving,’ 2013 [Online]. [Accessed 08.04.2020]. Available: https://www.codigotecnico.org/
  15. [15] ISO 7730. Ergonomics of the thermal environment Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Management, 2005.
  16. [16] Jimenez-Bescos C., Oregi X. Implementing User Behaviour on Dynamic Building Simulations for Energy Consumption. Env. & Climate Technologies 2019:23(3):308–318. https://doi.org/10.2478/rtuect-2019-009710.2478/rtuect-2019-0097
  17. [17] MyOpenHab Homepage [Online]. [Accessed 16.12.2019]. Available: https://www.myopenhab.org/
  18. [18] Linares-García Valdecasas R. et al. Semicircular lipoatrophy: An electrostatic hypothesis. Dermatology 2015:230(3):222–227. https://doi.org/10.1159/00037004510.1159/00037004525721213
  19. [19] Ministry of Industry, Energy and Tourism. Reglamento de Instalaciones Térmicas En Los Edificios. (Regulations oof thermal Installations in Buildings.) Boletin Oficial Del Estado, 2013. (in Basque)
  20. [20] INSHT (National Institute for Safety and Health at Work) [Online]. [Accessed 07.01.2020]. Available: https://www.insst.es/
DOI: https://doi.org/10.2478/rtuect-2020-0051 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 20 - 31
Published on: Sep 23, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Iñigo Rodriguez Vidal, Xabat Oregi, Jorge Otaegi, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.