[8] Jankowska E., Sahu A. K., Oleskowicz-Popiel P. Biogas from microalgae: Review on microalgae’s cultivation, harvesting and pretreatment for anaerobic digestion. Renewable and Sustainable Energy Reviews 2017:75:692–709. https://doi.org/10.1016/j.rser.2016.11.04510.1016/j.rser.2016.11.045
[14] Ramanna L., Guldhe A., Rawat I., Bux F. The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources. Bioresource Technology 2014:168:127–135. https://doi.org/10.1016/j.biortech.2014.03.06410.1016/j.biortech.2014.03.06424768415
[15] Romero-Villegas G. I., et al. Fiamengo M., Acién-Fernández F. G., Molina-Grima E. Utilization of centrate for the outdoor production of marine microalgae at the pilot-scale in raceway photobioreactors. Journal of Environmental Management 2018:228:506–516. https://doi.org/10.1016/j.jenvman.2018.08.02010.1016/j.jenvman.2018.08.02030273769
[16] Arcila J. S., Buitrón G. Microalgae-bacteria aggregates: effect of the hydraulic retention time on the municipal wastewater treatment, biomass settleability and methane potential. Journal of Chemical Technology and Biotechnology 2016:91:2862–2870. https://doi.org/10.1002/jctb.490110.1002/jctb.4901
[20] Monlau F., et al. New opportunities for agricultural digestate valorization: Current situation and perspectives. Energy and Environmental Science 2015:8(9):2600–2621. https://doi.org/10.1039/C5EE01633A10.1039/C5EE01633A
[26] Kwietniewska E., Tys J. Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus onmicroalgal biomass fermentation. Renewable and Sustainable Energy Reviews 2014:34:491–500. https://doi.org/10.1016/j.rser.2014.03.04110.1016/j.rser.2014.03.041
[27] Huesemann M. H., et al. A Screening Model to Predict Microalgae Biomass Growth in Photobioreactors and Raceway Ponds. Biotechnology and Bioengineering 2013:110(6):1583–1594. https://doi.org/10.1002/bit.2481410.1002/bit.2481423280255
[35] Sheehan J., Dunahay T., Benemann J., Roessler P. A look back at the U.S. Department of Energy’s aquatic species program: biodiesel from algae. NREL/TP-580-24190. National Renewable Energy Laboratory, USA, 1998.10.2172/15003040
[39] Passos F., Ferrer I. Microalgae conversion to biogas: thermal pretreatment contribution on net energy production. Environ Sci Technol 2014:48:7171–8. https://doi.org/10.1021/es500982v10.1021/es500982v24825469
[42] Placzek M., Patyna A., Witczak S. Technical evaluation of photobioreactors for microalgae cultivation. E3S Web of Conferences 2017:19:02032.10.1051/e3sconf/20171902032
[49] Park J. B. K., Craggs R. J. Algal production in wastewater treatment high rate algal ponds for potential biofuel use. Water Science and Technology 2011:63(10):2403–2410. https://doi.org/10.2166/wst.2011.20010.2166/wst.2011.20021977667
[51] Skau L. F., Andersen T., Thrane J.-E., Hessen D. O. Growth, stoichiometry and cell size; temperature and nutrient responses in haptophytes. PeerJ 2017:5(C):e3743. https://doi.org/10.7717/peerj.374310.7717/peerj.3743559055028890852
[52] Park J. B. K., Craggs R. J. Algal production in wastewater treatment high rate algal ponds for potential biofuel use. Water Science and Technology 2011:63(10):2403–2410. https://doi.org/10.2166/wst.2011.20010.2166/wst.2011.200
[54] Gonçalves A. L., Pires J. C. M., Simões M. The effects of light and temperature on microalgal growth and 2 nutrients removal: an experimental and mathematical approach. RSC Advances 2016:27:22896–22907. https://doi.org/10.1039/C5RA26117A10.1039/C5RA26117A
[55] Iasimone F., et al. Effect of light intensity and nutrients supply on microalgae cultivated in urban wastewater: Biomass production, lipids accumulation and settleability characteristics. Journal of Environmental Management 2018:223:1078–1085. https://doi.org/10.1016/j.jenvman.2018.07.02410.1016/j.jenvman.2018.07.02430096748
[57] Yadala S., Cremaschi S. A Dynamic Optimization Model for Designing Open-Channel Raceway Ponds for Batch Production of Algal Biomass. Processes 2016:4:10. https://doi.org/10.3390/pr402001010.3390/pr4020010
[58] Guillard R. R. L., Sieracki M. S. Counting Cells in Cultures with the Light Microscope. In Algal Culturing Techniques. Ed. Andersen R. A. New York: Elsevier Academic Press, 2005:239–252.10.1016/B978-012088426-1/50017-2
[59] Richmond A., Hu Q. Handbook of Microalgal Culture: Biotechnology and Applied Phycology (2nd Ed.). Hoboken: Wiley-Blackwell, 2013.10.1002/9781118567166
[62] Daliry S., et al. Investigation of optimal condition for Chlorella vulgaris microalgae growth. Global Journal of Environmental Science and Management 2017:3(2):217–230. https://doi.org/10.22034/gjesm.2017.03.02.010
[64] Conti F., et al. CFD modelling of biomass mixing in anaerobic digesters of biogas plants. Journal of Climate and Environmental Technologies. In Press.
[66] Yun Y. S., Moon Par J. Kinetic Modeling of the Light-Dependent Photosynthetic Activity of the Green Microalga Chlorella vulgaris. Biotechnology and Bioengineering 2003:83(3):303–11. https://doi.org/10.1002/bit.1066910.1002/bit.1066912783486