[2] Bach W. Impact of increasing atmospheric CO2 concentrations on global climate: Potential consequences and corrective measures. Environment International 1979:2(4–6):215–228. https://doi.org/10.1016/0160-4120(79)90004-7">https://doi.org/10.1016/0160-4120(79)90004-710.1016/0160-4120(79)90004-7
[4] Kern F., Rogge K. S. The pace of governed energy transitions: Agency, international dynamics and the global Paris agreement accelerating decarbonisation processes? Energy Research & Social Science 2016:22:13–17. https://doi.org/10.1016/j.erss.2016.08.016">https://doi.org/10.1016/j.erss.2016.08.01610.1016/j.erss.2016.08.016
[7] Bromley P. S. Extraordinary interventions: Toward a framework for rapid transition and deep emission reductions in the energy space. Energy Research & Social Science 2016:22:165–171. https://doi.org/10.1016/j.erss.2016.08.018">https://doi.org/10.1016/j.erss.2016.08.01810.1016/j.erss.2016.08.018
[9] Sovacool B. K., Hess D. J. Ordering theories: Typologies and conceptual frameworks for sociotechnical change. Social Studies of Science 2017:47(5):703–750. https://doi.org/10.1177/0306312717709363">https://doi.org/10.1177/030631271770936310.1177/0306312717709363564804928641502
[13] Lane J. L., Smart S., Schmeda-Lopez D., Hoegh-Guldberg O., Garnett A., Greig C., McFarland E. Understanding constraints to the transformation rate of global energy infrastructure. WIREs Energy and Environment 2016:5(1):33–48. https://doi.org/10.1002/wene.177">https://doi.org/10.1002/wene.17710.1002/wene.177
[14] Hansen T., Coenen L. The geography of sustainability transitions: Review, synthesis and reflections on an emergent research field. Environmental Innovation and Societal Transitions 2015:17:92–109. https://doi.org/10.1016/j.eist.2014.11.001">https://doi.org/10.1016/j.eist.2014.11.00110.1016/j.eist.2014.11.001
[20] Rozentale L., Blumberga D. Methods to Evaluate Electricity Policy from Climate Perspective. Environmental and Climate Technologies 2019:23(2):131–147. https://doi.org/10.2478/rtuect-2019-0060">https://doi.org/10.2478/rtuect-2019-006010.2478/rtuect-2019-0060
[21] Abdollahi H. Investigating Energy Use, Environment Pollution, and Economic Growth in Developing Countries. Environmental and Climate Technologies 2020:24(1):275–293. https://doi.org/10.2478/rtuect-2020-0016">https://doi.org/10.2478/rtuect-2020-001610.2478/rtuect-2020-0016
[22] Grubler A., Wilson C., Nemet G. Apples, oranges, and consistent comparisons of the temporal dynamics of energy transitions. Energy Research & Social Science 2016:22:18–25. https://doi.org/10.1016/j.erss.2016.08.015">https://doi.org/10.1016/j.erss.2016.08.01510.1016/j.erss.2016.08.015
[25] Wakiyama T., Zusman E., Monogan Iii J. E. Can a low-carbon-energy transition be sustained in post-Fukushima Japan? Assessing the varying impacts of exogenous shocks. Energy Policy 2014:73:654–666. https://doi.org/10.1016/j.enpol.2014.06.017">https://doi.org/10.1016/j.enpol.2014.06.01710.1016/j.enpol.2014.06.017
[26] Hermwille L. The role of narratives in socio-technical transitions – Fukushima and the energy regimes of Japan, Germany, and the United Kingdom. Energy Research & Social Science 2016:11:237–246. https://doi.org/10.1016/j.erss.2015.11.001">https://doi.org/10.1016/j.erss.2015.11.00110.1016/j.erss.2015.11.001
[29] Rogelj J., Luderer G., Pietzcker R. C., Kriegler E., Schaeffer M., Krey V., Riahi K. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nature Climatic Change 2015:5:519–527. https://doi.org/10.1038/nclimate2572">https://doi.org/10.1038/nclimate257210.1038/nclimate2572