References
- [1] Council BE. World Energy Scenarios. World Energy Council, 2013.
- [2] Bajcinovci B. Environment Quality: Impact From Traffic, Power Plant and Land Morphology, a Case Study of Prishtina. Environmental and Climate Technologies 2017:19:65–74. https://doi.org/10.1515/rtuect-2017-000610.1515/rtuect-2017-0006
- [3] Bariss U., Bazbauers G., Blumberga A., Blumberga D. System Dynamics Modeling of Households’ Electricity Consumption and Cost-Income Ratio: a Case Study of Latvia. Environmental and Climate Technologies 2017:20(1):36–50. https://doi.org/10.1515/rtuect-2017-000910.1515/rtuect-2017-0009
- [4] Sutthichaimethee P., Ariyasajjakorn D. Forecast of Carbon Dioxide Emissions from Energy Consumption in Industry Sectors in Thailand. Environmental and Climate Technologies 2018:22:107–117. https://doi.org/10.2478/rtuect-2018-000710.2478/rtuect-2018-0007
- [5] Albatayneh A., Alterman D., Page A., Moghtaderi B. The Significance of Building Design for the Climate. Environmental and Climate Technologies 2018:22:165–178. https://doi.org/10.2478/rtuect-2018-001110.2478/rtuect-2018-0011
- [6] Conti J., et al. International energy outlook 2016 with projections to 2040. USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Energy Analysis, 2016.
- [7] Curran S. J. et al. Well-to-wheel analysis of direct and indirect use of natural gas in passenger vehicles. Energy 2014:75:194–203. https://doi.org/10.1016/j.energy.2014.07.03510.1016/j.energy.2014.07.035
- [8] Assis Brasil de W. N., et al. Energy and emission impacts of liquid fueled engines compared to electric motors for small size motorcycles based on the Brazilian scenario. Energy 2019:168:70–79. https://doi.org/10.1016/j.energy.2018.11.05110.1016/j.energy.2018.11.051
- [9] Van Vliet O., et al. Energy use, cost and CO2 emissions of electric cars. Journal of Power Sources 2011:196(4):2298–2310. https://doi.org/10.1016/j.jpowsour.2010.09.11910.1016/j.jpowsour.2010.09.119
- [10] Travesset-Baro O., Rosas-Casals M., Jover E. Transport energy consumption in mountainous roads. A comparative case study for internal combustion engines and electric vehicles in Andorra. Transportation Research Part D: Transport and Environment 2015:34:16–26. https://doi.org/10.1016/j.trd.2014.09.00610.1016/j.trd.2014.09.006
- [11] Kosai S., Nakanishi M., Yamasue E. Vehicle energy efficiency evaluation from well-to-wheel lifecycle perspective. Transportation Research Part D: Transport and Environment 2018:65:355–367. https://doi.org/10.1016/j.trd.2018.09.01110.1016/j.trd.2018.09.011
- [12] Hekkert M. P., Hendriks F. H., Faaij A. P., Neelis M. L. Natural gas as an alternative to crude oil in automotive fuel chains well-to-wheel analysis and transition strategy development. Energy Policy 2005:33(5):579–594. https://doi.org/10.1016/j.enpol.2003.08.01810.1016/j.enpol.2003.08.018
- [13] Wang M. Fuel choices for fuel-cell vehicles: well-to-wheels energy and emission impacts. Journal of Power Sources 2002:112(1):307–321. https://doi.org/10.1016/S0378-7753(02)00447-010.1016/S0378-7753(02)00447-0
- [14] Stodolsky F., et al. Total fuel cycle impacts of advanced vehicles. SAE transactions 1999:444–459.10.4271/1999-01-0322
- [15] Ou X. M., Zhang X. L., Chang S. Y. Life-cycle analysis of energy consumption, GHG emissions and regulated pollutants emissions of automotive fuel pathways in China. Bejing: Center of Automotive Energy Research Center, Tsinghua University, 2008.
- [16] Tobin J. Natural gas compressor stations on the interstate pipeline network: developments since 1996. Energy Information Administration, Office of Oil and Gas 2007:1–12.
- [17] Bureau C. S. China energy statistic yearbook 2008. Beijing: China Statistic Press, 2018.
- [18] Pamela L. S., Mann M. K., Kerr D. R. Life cycle assessment of coal-fired power production. U.S.: National Renewable Energy Lab., 1999. https://doi.org/10.2172/1210010.2172/12100
- [19] NETL. Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity Rev. 2. Pittsburgh, 2010.
- [20] Torchio M. F., Santarelli M. G. Energy, environmental and economic comparison of different powertrain/fuel options using well-to-wheels assessment, energy and external costs–European market analysis. Energy 2010:35(10):4156–4171. https://doi.org/10.1016/j.energy.2010.06.037.10.1016/j.energy.2010.06.037
- [21] Torchio M. F., Santarelli M. G. Energy, environmental and economic comparison of different powertrain/fuel options using well-to-wheels assessment, energy and external costs–European market analysis. Energy 2018:35(10):4156–4171. https://doi.org/10.1016/j.energy.2010.06.03710.1016/j.energy.2010.06.037
- [22] Unnasch S., Browning L. Fuel Cycle Energy Conversion Efficiency Analysis. Status Report. CA: Air Resources Board, 2000.
- [23] Graus W., Worrell E. Trend in efficiency and capacity of fossil power generation in the EU. Energy Policy 2009:37(6):2147–2160. https://doi.org/10.1016/j.enpol.2009.01.034.10.1016/j.enpol.2009.01.034
- [24] Tolmasquim M. Energia Renovável: hidráulica, biomassa, eólica, solar, oceânica, 2016.
- [25] Rosen M. A. Energy-and exergy-based comparison of coal-fired and nuclear steam power plants. Exergy, An International Journal 2001:1(3):180–192. https://doi.org/10.1016/S1164-0235(01)00024-310.1016/S1164-0235(01)00024-3
- [26] Edwards R., et al. Well-to-wheels analysis of future automotive fuels and powertrains in the European context. SAE transactions 2004:1072–1084.10.4271/2004-01-1924
- [27] Fioreze M. Montagem de dispositivos ópticos para obtenção de imagens por contraste de difração e atenuação para análise de incrustações de fosfato e oxalato de cálcio em superfícies de caldeiras. Installation of optical devices for obtaining images by diffraction contrast and attenuation for analysis of calcium phosphate and oxalate incrustations on boiler surfaces, 2016. [Online]. [Accessed 15.03.2019]. Available: http://dspace.unila.edu.br/123456789/637 (In Spanish).
- [28] Allik A., Märss M., Uiga J., Annuk, A. Optimization of the inverter size for grid-connected residential wind energy systems with peak shaving. Renewable Energy 2016:99:1116–1125. https://doi.org/10.1016/j.renene.2016.08.01610.1016/j.renene.2016.08.016
- [29] Pearsall N. The Performance of Photovoltaic (PV) Systems: Modelling, Measurement and Assessment. Woodhead Publishing, 2016. https://doi.org/10.1016/C2014-0-02701-310.1016/C2014-0-02701-3
- [30] Shipley M., et al. Combined heat and power: Effective energy solutions for a sustainable future. Oak Ridge National Laboratory, 2008.10.2172/1218492
- [31] Linssen J., Bickert S., Hennings W. Netzintegration von Fahrzeugen mit elektrifizierten Antriebssystemen in bestehende und zukünftige Energieversorgungsstrukturen. Advances in Systems Analyses 1. 2012.
- [32] Smith W. J. Can EV (electric vehicles) address Ireland’s CO2 emissions from transport? Energy 2010:35(12):4514–4521. https://doi.org/10.1016/j.energy.2010.07.029 (in German)10.1016/j.energy.2010.07.029
- [33] Hayes J. G., De Oliveira R. P. R., Vaughan S., Egan M. G. Simplified electric vehicle power train models and range estimation. Presented at the IEEE vehicle power and propulsion conference, 2011. https://doi.org/10.1109/VPPC.2011.604316310.1109/VPPC.2011.6043163
- [34] Campanari S., Manzolini G., De la Iglesia F. G. Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations. Journal of Power Sources 2009:186(2):464–477. https://doi.org/10.1016/j.jpowsour.2008.09.11510.1016/j.jpowsour.2008.09.115
- [35] Van Sterkenburg S., et al. Analysis of regenerative braking efficiency—A case study of two electric vehicles operating in the Rotterdam area. Presented at the 2011 IEEE Vehicle Power and Propulsion Conference, 2011. https://doi.org/10.1109/VPPC.2011.604310910.1109/VPPC.2011.6043109
- [36] Athanasopoulou L., Bikas H., Stavropoulos P. Comparative Well-to-Wheel Emissions Assessment of Internal Combustion Engine and Battery Electric Vehicles. Procedia CIRP 2018:78:25–30. https://doi.org/10.1016/j.procir.2018.08.16910.1016/j.procir.2018.08.169
- [37] Singh B., Ellingsen, L. A. W., Strømman A. H. Pathways for GHG emission reduction in Norwegian road transport sector: Perspective on consumption of passenger car transport and electricity mix. Transportation Research Part D: Transport and Environment 2015:41:160–164. https://doi.org/10.1016/j.trd.2015.09.02810.1016/j.trd.2015.09.028
- [38] National Academies of Sciences, Engineering, and Medicine. Review of the 21st Century Truck Partnership: Third Report. National Academies Press, 2015.
- [39] Sovran G. Revisiting the formulas for tractive and braking energy on the EPA driving schedules. SAE International Journal of Passenger Cars-Mechanical Systems 2013:6(1):269–282. https://doi.org/10.4271/2013-01-076610.4271/2013-01-0766
- [40] Kirkinen J., Palosuo T., Holmgren K., Savolainen I. Greenhouse impact due to the use of combustible fuels: Life cycle viewpoint and relative radiative forcing commitment. Environmental Management 2008:42(3):458. https://doi.org/10.1007/s00267-008-9145-z10.1007/s00267-008-9145-z251708818521657
- [41] Shonnard D. R., Klemetsrud B., Sacramento-Rivero J., Navarro-Pineda F., Hilbert J., Handler R., Suppen N., Donovan R. P. A review of environmental life cycle assessments of liquid transportation biofuels in the Pan American region. Environmental Management 2015:56(6):1356–76. https://doi.org/10.1007/s00267-015-0543-810.1007/s00267-015-0543-826041501
- [42] Doyle M. W., Von Windheim J. Environmental management strategy: four forces analysis. Environmental Management 2015:55(1):6–18. https://doi.org/10.1007/s00267-014-0389-510.1007/s00267-014-0389-525331643