[1] Anex R. P. et al. Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel 2010:89(S1):S29–S35. https://doi.org/10.1016/j.fuel.2010.07.015">https://doi.org/10.1016/j.fuel.2010.07.01510.1016/j.fuel.2010.07.015
[2] Isikgor H. F., Becer C. R. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 2015:6(25):4497–4559. https://doi.org/10.1039/C5PY00263J">https://doi.org/10.1039/C5PY00263J10.1039/C5PY00263J
[4] Mohan D., Pittman C. U. Jr., Steele P. H. Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energy Fuels 2006:20(3):848–889. https://doi.org/10.1021/ef0502397">https://doi.org/10.1021/ef050239710.1021/ef0502397
[6] Ranzi E., Debiagi P. E. A., Frassoldati A. Mathematical Modeling of Fast Biomass Pyrolysis and Bio-Oil Formation. Note I: Kinetic Mechanism of Biomass Pyrolysis. ACS Sustain. Chem. Eng. 2017:5(4):2867–2881. https://doi.org/10.1021/acssuschemeng.6b03096">https://doi.org/10.1021/acssuschemeng.6b0309610.1021/acssuschemeng.6b03096
[7] Sharypov V. I. et al. Co-pyrolysis of wood biomass and synthetic polymers mixtures. Part III: Characterisation of heavy products. J. Anal. Appl. Pyrolysis 2003:67(2):325–340. https://doi.org/10.1016/S0165-2370(02)00071-2">https://doi.org/10.1016/S0165-2370(02)00071-210.1016/S0165-2370(02)00071-2
[8] Sharypov V. I. et al. Co-pyrolysis of wood biomass and synthetic polymer mixtures. Part I: influence of experimental conditions on the evolution of solids, liquids and gases. J. Anal. Appl. Pyrolysis, 2002:64(1):15–28. https://doi.org/10.1016/S0165-2370(01)00167-X">https://doi.org/10.1016/S0165-2370(01)00167-X10.1016/S0165-2370(01)00167-X
[9] Zhou C.-H., Xia X., Lin C.-X., Tong D.-S., Beltramini J. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev. 2011:40(11):5588–5617. https://doi.org/10.1039/c1cs15124j">https://doi.org/10.1039/c1cs15124j10.1039/c1cs15124j21863197
[10] Kamble A. D., Saxena V. K., Chavan P. D., Mendhe V. A. Co-gasification of coal and biomass an emerging clean energy technology: Status and prospects of development in Indian context. Int. J. Min. Sci. Technol. 2019:29(2):171–186. https://doi.org/10.1016/j.ijmst.2018.03.011">https://doi.org/10.1016/j.ijmst.2018.03.01110.1016/j.ijmst.2018.03.011
[11] Quan C., Gao N. Copyrolysis of Biomass and Coal: A Review of Effects of Copyrolysis Parameters, Product Properties, and Synergistic Mechanisms. Biomed Research International 2016:6197867. https://doi.org/10.1155/2016/6197867">https://doi.org/10.1155/2016/619786710.1155/2016/6197867504609527722171
[12] Park D. K., Kim S. D., Lee S. H., Lee J. G. Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor. Bioresource Technology 2010:101(15):6151–6156. https://doi.org/10.1016/j.biortech.2010.02.087">https://doi.org/10.1016/j.biortech.2010.02.08710.1016/j.biortech.2010.02.08720299208
[14] Krasulina J., Luik H., Palu V., Tamvelius H. Thermochemical Co-liquefication of Estonian Oil Shale With Peat and Pine Bark. Oil Shale 2012:29(3):222–236. https://doi.org/10.3176/oil.2012.3.03">https://doi.org/10.3176/oil.2012.3.0310.3176/oil.2012.3.03
[16] Konist A., Valtsev A., Loo L., Pihu T., Liira M., Kirsimäe K. Influence of oxy-fuel combustion of Ca-rich oil shale fuel on carbonate stability and ash composition. Fuel 2015:139:671–677. https://doi.org/10.1016/j.fuel.2014.09.050">https://doi.org/10.1016/j.fuel.2014.09.05010.1016/j.fuel.2014.09.050
[19] Kann J., Elenurm A., Rohtla I., Golubev N., Kaidalov A., Kindorkin B. About thermal low-temperature processing of oil shale by solid heat carrier method. Oil Shale 2004:21(3):195–203.10.3176/oil.2004.3.02
[20] Oja V., Rooleht R., Baird S. Z. Physical and thermodynamic properties of kukersite pyrolysis shale oil: literature review. Oil Shale 2016:33(2):184–197. https://doi.org/10.3176/oil.2016.2.06">https://doi.org/10.3176/oil.2016.2.0610.3176/oil.2016.2.06
[21] Järvik O., Oja V. Molecular Weight Distributions and Average Molecular Weights of Pyrolysis Oils From Oil Shales: Literature Data and Measurements by Size Exclusion Chromatography (SEC) and Atmospheric Solids Analysis Probe Mass Spectroscopy (ASAP MS) or Oils from Four Different Deposits. Energy and Fuels 2017:31(1):328–339. https://doi.org/10.1021/acs.energyfuels.6b02452">https://doi.org/10.1021/acs.energyfuels.6b0245210.1021/acs.energyfuels.6b02452
[23] Varma A. K., Shankar R., Mondal P. A Review on Pyrolysis of Biomass and the Impacts of Operating Conditions on Product Yield, Quality, and Upgradation. In Sarangi P., Nanda S., Mohanty P. (eds) Recent Advancements in Biofuels and Bioenergy Utilization. Springer, Singapore 2018, pp. 227–259. https://doi.org/10.1007/978-981-13-1307-3_10">https://doi.org/10.1007/978-981-13-1307-3_1010.1007/978-981-13-1307-3_10
[25] Dhaundiyal A., Tewari P. Kinetic Parameters for the Thermal Decomposition of Forest Waste Using Distributed Activation Energy Model (DAEM). Environmental and Climate Technologies 2017:19(1):15–32. https://doi.org/10.1515/rtuect-2017-0002">https://doi.org/10.1515/rtuect-2017-000210.1515/rtuect-2017-0002
[26] Dhaundiyal A., Singh S. B. Mathematical insight to non-isothermal pyrolysis of pine needles for different probability distribution functions. Biofuels 2018:9(5):647–658. https://doi.org/10.1080/17597269.2017.1329495">https://doi.org/10.1080/17597269.2017.132949510.1080/17597269.2017.1329495
[27] Emami-Taba L., Irfan M. F., Wan Daud W. M. A., Chakrabarti M. H. Fuel blending effects on the co-gasification of coal and biomass – A review. Biomass and Bioenergy 2013:57:249–263. https://doi.org/10.1016/j.biombioe.2013.02.043">https://doi.org/10.1016/j.biombioe.2013.02.04310.1016/j.biombioe.2013.02.043
[28] Huber W. G., Iborra S., Corma A. Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. ChemInform, 2006. https://doi.org/10.1002/chin.200652240">https://doi.org/10.1002/chin.20065224010.1002/chin.200652240
[30] Plamus K., Soosaar S., Ots A., Neshumayev D. Firing Estonian Oil Shale of Higher Quality in CFB Boilers – Environmental and Economic Impact. Oil Shale 2011:28(1S):113. https://doi.org/10.3176/oil.2011.1S.04">https://doi.org/10.3176/oil.2011.1S.0410.3176/oil.2011.1S.04
[32] Williams P. T., Besler S., Taylor D. T. The pyrolysis of scrap automotive tyres: The influence of temperature and heating rate on product composition. Fuel 1990:69(12):1474–1482. https://doi.org/10.1016/0016-2361(90)90193-T">https://doi.org/10.1016/0016-2361(90)90193-T10.1016/0016-2361(90)90193-T
[33] Guizani C., Jeguirim M., Valin S., Limousy L., Salvador S. Biomass Chars: The Effects of Pyrolysis Conditions on Their Morphology, Structure, Chemical Properties and Reactivity. Energies 2017:10(6):796. https://doi.org/10.3390/en10060796">https://doi.org/10.3390/en1006079610.3390/en10060796
[34] Debdoubi A., El amarti A., Colacio E., Blesa M. J., Hajjaj L. H. The effect of heating rate on yields and compositions of oil products from esparto pyrolysis. Int. J. Energy Res. 2006:30(15):1243–1250. https://doi.org/10.1002/er.1215">https://doi.org/10.1002/er.121510.1002/er.1215
[35] Waheed Q. M. K., Nahil M. A., Williams P. T. Pyrolysis of waste biomass: investigation of fast pyrolysis and slow pyrolysis process conditions on product yield and gas composition. J. Energy Inst. 2013:86(4):233–241. https://doi.org/10.1179/1743967113Z.00000000067">https://doi.org/10.1179/1743967113Z.0000000006710.1179/1743967113Z.00000000067
[36] Dhaundiyal A., Singh S. B., Hanon R., Muammel M. Rawat. Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus. Environmental and Climate Technologies 2018:22(1):5–22. https://doi.org/10.1515/rtuect-2018-0001">https://doi.org/10.1515/rtuect-2018-000110.1515/rtuect-2018-0001
[41] Augustenborg C. A., Hepp S., Kammann C., Hagan D., Schmidt O., Müller C. Biochar and Earthworm Effects on Soil Nitrous Oxide and Carbon Dioxide Emissions. J. Environ. Qual. 2012:41(4):1203. https://doi.org/10.2134/jeq2011.0119">https://doi.org/10.2134/jeq2011.011910.2134/jeq2011.011922751063
[43] Kirsanovs V., Blumberga D., Dzikevics M., Kovals A. Design of Experimental Investigations on the Effect of Equivalence Ratio, Fuel Moisture Content and Fuel Consumption on Gasification Process. Energy Procedia 2016:95:189–194. https://doi.org/10.1016/j.egypro.2016.09.045">https://doi.org/10.1016/j.egypro.2016.09.04510.1016/j.egypro.2016.09.045
[44] Kirsanovs V., Blumberga D., Veidenbergs I., Rochas C., Vigants E., Vigants G. Experimental investigation of downdraft gasifier at various conditions. Energy Procedia 2017:128:332–338. https://doi.org/10.1016/j.egypro.2017.08.321">https://doi.org/10.1016/j.egypro.2017.08.32110.1016/j.egypro.2017.08.321
[45] Ronsse F., S. van Hecke, Dickinson D., Prins W. Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy 2013:5(2):104–115. https://doi.org/10.1111/gcbb.12018">https://doi.org/10.1111/gcbb.1201810.1111/gcbb.12018
[47] Reinik J. et al. Characterization of water extracts of oil shale retorting residues form gaseous and solid heat carrier processes. Fuel Process. Technol. 2015:131:443–451. https://doi.org/10.1016/j.fuproc.2014.12.024">https://doi.org/10.1016/j.fuproc.2014.12.02410.1016/j.fuproc.2014.12.024
[50] Vélez J. F., Chejne F., Valdés C. F., Emery E. J., Londoño C. A. Co-gasification of Colombian coal and biomass in fluidized bed: An experimental study. Fuel 2009:88(3):424–430. https://doi.org/10.1016/j.fuel.2008.10.018">https://doi.org/10.1016/j.fuel.2008.10.01810.1016/j.fuel.2008.10.018
[51] Järvik O., Viiroja A., Kamenev S., Kamenev I. Activated sludge process coupled with intermittent ozonation for sludge yield reduction and effluent water quality control. J. Chem. Technol. Biotechnol. 2011:86(7). https://doi.org/10.1002/jctb.2610">https://doi.org/10.1002/jctb.261010.1002/jctb.2610
[52] Paguio R. R., Saito K. M., Hund J. F., Jimenez R. M. Synthesis of Resorcinol Formaldehyde Aerogel Using UV Photo-Initiators for Inertial Confinement Fusion Experiments. MRS Proc. 2011:1306. https://doi.org/10.1557/opl.2011.476">https://doi.org/10.1557/opl.2011.47610.1557/opl.2011.476
[54] Peikolainen A.-L., Volobujeva O., Aav R., Uibu M., Koel M. Organic acid catalyzed synthesis of 5-methylresorcinol based organic aerogels in acetonitrile. J. Porous Mater. 2012:19(2):189–194. https://doi.org/10.1007/s10934-011-9459-8">https://doi.org/10.1007/s10934-011-9459-810.1007/s10934-011-9459-8