Have a personal or library account? Click to login
Co-Pyrolysis and Co-Gasification of Biomass and Oil Shale Cover

Co-Pyrolysis and Co-Gasification of Biomass and Oil Shale

Open Access
|Oct 2020

References

  1. [1] Anex R. P. et al. Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel 2010:89(S1):S29–S35. https://doi.org/10.1016/j.fuel.2010.07.015">https://doi.org/10.1016/j.fuel.2010.07.01510.1016/j.fuel.2010.07.015
  2. [2] Isikgor H. F., Becer C. R. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 2015:6(25):4497–4559. https://doi.org/10.1039/C5PY00263J">https://doi.org/10.1039/C5PY00263J10.1039/C5PY00263J
  3. [3] Bridgwater A. V. Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy 2012:38:68–94. https://doi.org/10.1016/j.biombioe.2011.01.048">https://doi.org/10.1016/j.biombioe.2011.01.04810.1016/j.biombioe.2011.01.048
  4. [4] Mohan D., Pittman C. U. Jr., Steele P. H. Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energy Fuels 2006:20(3):848–889. https://doi.org/10.1021/ef0502397">https://doi.org/10.1021/ef050239710.1021/ef0502397
  5. [5] Özsin G., Pütün A. E. Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FTIR. Waste Management 2017:64:315–326. https://doi.org/10.1016/j.wasman.2017.03.020">https://doi.org/10.1016/j.wasman.2017.03.02010.1016/j.wasman.2017.03.020
  6. [6] Ranzi E., Debiagi P. E. A., Frassoldati A. Mathematical Modeling of Fast Biomass Pyrolysis and Bio-Oil Formation. Note I: Kinetic Mechanism of Biomass Pyrolysis. ACS Sustain. Chem. Eng. 2017:5(4):2867–2881. https://doi.org/10.1021/acssuschemeng.6b03096">https://doi.org/10.1021/acssuschemeng.6b0309610.1021/acssuschemeng.6b03096
  7. [7] Sharypov V. I. et al. Co-pyrolysis of wood biomass and synthetic polymers mixtures. Part III: Characterisation of heavy products. J. Anal. Appl. Pyrolysis 2003:67(2):325–340. https://doi.org/10.1016/S0165-2370(02)00071-2">https://doi.org/10.1016/S0165-2370(02)00071-210.1016/S0165-2370(02)00071-2
  8. [8] Sharypov V. I. et al. Co-pyrolysis of wood biomass and synthetic polymer mixtures. Part I: influence of experimental conditions on the evolution of solids, liquids and gases. J. Anal. Appl. Pyrolysis, 2002:64(1):15–28. https://doi.org/10.1016/S0165-2370(01)00167-X">https://doi.org/10.1016/S0165-2370(01)00167-X10.1016/S0165-2370(01)00167-X
  9. [9] Zhou C.-H., Xia X., Lin C.-X., Tong D.-S., Beltramini J. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev. 2011:40(11):5588–5617. https://doi.org/10.1039/c1cs15124j">https://doi.org/10.1039/c1cs15124j10.1039/c1cs15124j21863197
  10. [10] Kamble A. D., Saxena V. K., Chavan P. D., Mendhe V. A. Co-gasification of coal and biomass an emerging clean energy technology: Status and prospects of development in Indian context. Int. J. Min. Sci. Technol. 2019:29(2):171–186. https://doi.org/10.1016/j.ijmst.2018.03.011">https://doi.org/10.1016/j.ijmst.2018.03.01110.1016/j.ijmst.2018.03.011
  11. [11] Quan C., Gao N. Copyrolysis of Biomass and Coal: A Review of Effects of Copyrolysis Parameters, Product Properties, and Synergistic Mechanisms. Biomed Research International 2016:6197867. https://doi.org/10.1155/2016/6197867">https://doi.org/10.1155/2016/619786710.1155/2016/6197867504609527722171
  12. [12] Park D. K., Kim S. D., Lee S. H., Lee J. G. Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor. Bioresource Technology 2010:101(15):6151–6156. https://doi.org/10.1016/j.biortech.2010.02.087">https://doi.org/10.1016/j.biortech.2010.02.08710.1016/j.biortech.2010.02.08720299208
  13. [13] Hu Z., Ma X., Li L. The synergistic effect of co-pyrolysis of oil shale and microalgae to produce syngas. J. Energy Inst. 2016:89(3):447–455. https://doi.org/10.1016/j.joei.2015.02.009">https://doi.org/10.1016/j.joei.2015.02.00910.1016/j.joei.2015.02.009
  14. [14] Krasulina J., Luik H., Palu V., Tamvelius H. Thermochemical Co-liquefication of Estonian Oil Shale With Peat and Pine Bark. Oil Shale 2012:29(3):222–236. https://doi.org/10.3176/oil.2012.3.03">https://doi.org/10.3176/oil.2012.3.0310.3176/oil.2012.3.03
  15. [15] Chen B., Han X., Mu M., Jiang X. Studies of the Co-pyrolysis of Oil Shale and Wheat Straw. Energy & Fuels 2017:31(7):6941–6950. https://doi.org/10.1021/acs.energyfuels.7b00871">https://doi.org/10.1021/acs.energyfuels.7b0087110.1021/acs.energyfuels.7b00871
  16. [16] Konist A., Valtsev A., Loo L., Pihu T., Liira M., Kirsimäe K. Influence of oxy-fuel combustion of Ca-rich oil shale fuel on carbonate stability and ash composition. Fuel 2015:139:671–677. https://doi.org/10.1016/j.fuel.2014.09.050">https://doi.org/10.1016/j.fuel.2014.09.05010.1016/j.fuel.2014.09.050
  17. [17] World Energy Council. World Energy Resources 2016. 2016. London, United Kingdom.
  18. [18] Kann J., Raukas A., Siirde A. About the Gasification of Kukersite Oil Shale. Oil Shale 2013:30(2S):283–293, 2013. https://doi.org/10.3176/oil.2013.2S.08">https://doi.org/10.3176/oil.2013.2S.0810.3176/oil.2013.2S.08
  19. [19] Kann J., Elenurm A., Rohtla I., Golubev N., Kaidalov A., Kindorkin B. About thermal low-temperature processing of oil shale by solid heat carrier method. Oil Shale 2004:21(3):195–203.10.3176/oil.2004.3.02
  20. [20] Oja V., Rooleht R., Baird S. Z. Physical and thermodynamic properties of kukersite pyrolysis shale oil: literature review. Oil Shale 2016:33(2):184–197. https://doi.org/10.3176/oil.2016.2.06">https://doi.org/10.3176/oil.2016.2.0610.3176/oil.2016.2.06
  21. [21] Järvik O., Oja V. Molecular Weight Distributions and Average Molecular Weights of Pyrolysis Oils From Oil Shales: Literature Data and Measurements by Size Exclusion Chromatography (SEC) and Atmospheric Solids Analysis Probe Mass Spectroscopy (ASAP MS) or Oils from Four Different Deposits. Energy and Fuels 2017:31(1):328–339. https://doi.org/10.1021/acs.energyfuels.6b02452">https://doi.org/10.1021/acs.energyfuels.6b0245210.1021/acs.energyfuels.6b02452
  22. [22] Veski R., Veski S. Aliphatic dicarboxylic acids from oil shale orJDQLF PDWWHU ௅ KLVWRULF UHYLHZ Oil Shale 2019:36(1):76–95. https://doi.org/10.3176/oil.2019.1.06">https://doi.org/10.3176/oil.2019.1.0610.3176/oil.2019.1.06
  23. [23] Varma A. K., Shankar R., Mondal P. A Review on Pyrolysis of Biomass and the Impacts of Operating Conditions on Product Yield, Quality, and Upgradation. In Sarangi P., Nanda S., Mohanty P. (eds) Recent Advancements in Biofuels and Bioenergy Utilization. Springer, Singapore 2018, pp. 227–259. https://doi.org/10.1007/978-981-13-1307-3_10">https://doi.org/10.1007/978-981-13-1307-3_1010.1007/978-981-13-1307-3_10
  24. [24] Abnisa F., Wan Daud W. M. A. A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil. Energy Convers. Manag. 2014:87:71–85. https://doi.org/10.1016/j.enconman.2014.07.007">https://doi.org/10.1016/j.enconman.2014.07.00710.1016/j.enconman.2014.07.007
  25. [25] Dhaundiyal A., Tewari P. Kinetic Parameters for the Thermal Decomposition of Forest Waste Using Distributed Activation Energy Model (DAEM). Environmental and Climate Technologies 2017:19(1):15–32. https://doi.org/10.1515/rtuect-2017-0002">https://doi.org/10.1515/rtuect-2017-000210.1515/rtuect-2017-0002
  26. [26] Dhaundiyal A., Singh S. B. Mathematical insight to non-isothermal pyrolysis of pine needles for different probability distribution functions. Biofuels 2018:9(5):647–658. https://doi.org/10.1080/17597269.2017.1329495">https://doi.org/10.1080/17597269.2017.132949510.1080/17597269.2017.1329495
  27. [27] Emami-Taba L., Irfan M. F., Wan Daud W. M. A., Chakrabarti M. H. Fuel blending effects on the co-gasification of coal and biomass – A review. Biomass and Bioenergy 2013:57:249–263. https://doi.org/10.1016/j.biombioe.2013.02.043">https://doi.org/10.1016/j.biombioe.2013.02.04310.1016/j.biombioe.2013.02.043
  28. [28] Huber W. G., Iborra S., Corma A. Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. ChemInform, 2006. https://doi.org/10.1002/chin.200652240">https://doi.org/10.1002/chin.20065224010.1002/chin.200652240
  29. [29] Ptasinski K. J. Efficiency of biomass energy: an exergy approach to biofuels, power, and biorefineries. Wiley, 2016. https://doi.org/10.1002/9781119118169">https://doi.org/10.1002/978111911816910.1002/9781119118169
  30. [30] Plamus K., Soosaar S., Ots A., Neshumayev D. Firing Estonian Oil Shale of Higher Quality in CFB Boilers – Environmental and Economic Impact. Oil Shale 2011:28(1S):113. https://doi.org/10.3176/oil.2011.1S.04">https://doi.org/10.3176/oil.2011.1S.0410.3176/oil.2011.1S.04
  31. [31] Williams P. T., Besler S. The influence of temperature and heating rate on the slow pyrolysis of biomass. Renew. Energy 1996:7(3):233–250. https://doi.org/10.1016/0960-1481(96)00006-7">https://doi.org/10.1016/0960-1481(96)00006-710.1016/0960-1481(96)00006-7
  32. [32] Williams P. T., Besler S., Taylor D. T. The pyrolysis of scrap automotive tyres: The influence of temperature and heating rate on product composition. Fuel 1990:69(12):1474–1482. https://doi.org/10.1016/0016-2361(90)90193-T">https://doi.org/10.1016/0016-2361(90)90193-T10.1016/0016-2361(90)90193-T
  33. [33] Guizani C., Jeguirim M., Valin S., Limousy L., Salvador S. Biomass Chars: The Effects of Pyrolysis Conditions on Their Morphology, Structure, Chemical Properties and Reactivity. Energies 2017:10(6):796. https://doi.org/10.3390/en10060796">https://doi.org/10.3390/en1006079610.3390/en10060796
  34. [34] Debdoubi A., El amarti A., Colacio E., Blesa M. J., Hajjaj L. H. The effect of heating rate on yields and compositions of oil products from esparto pyrolysis. Int. J. Energy Res. 2006:30(15):1243–1250. https://doi.org/10.1002/er.1215">https://doi.org/10.1002/er.121510.1002/er.1215
  35. [35] Waheed Q. M. K., Nahil M. A., Williams P. T. Pyrolysis of waste biomass: investigation of fast pyrolysis and slow pyrolysis process conditions on product yield and gas composition. J. Energy Inst. 2013:86(4):233–241. https://doi.org/10.1179/1743967113Z.00000000067">https://doi.org/10.1179/1743967113Z.0000000006710.1179/1743967113Z.00000000067
  36. [36] Dhaundiyal A., Singh S. B., Hanon R., Muammel M. Rawat. Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus. Environmental and Climate Technologies 2018:22(1):5–22. https://doi.org/10.1515/rtuect-2018-0001">https://doi.org/10.1515/rtuect-2018-000110.1515/rtuect-2018-0001
  37. [37] Bhatia S. C. Advanced renewable energy systems. Woodhead Publishing India, 2014.
  38. [38] Task33 Database. [Online]. [Accessed: 14-Jun-2019]. Available: http://task33.ieabioenergy.com/content/Task 33 Projects.
  39. [39] Shen Q., Hedley M., Camps Arbestain M., Kirschbaum M. U. Can biochar increase the bioavailability of phosphorus? Journal of Soil Science and Plant Nutrition 2016:16(2). https://doi.org/10.4067/S0718-95162016005000022">https://doi.org/10.4067/S0718-9516201600500002210.4067/S0718-95162016005000022
  40. [40] Yadav A., Ansari K. B., Simha P., Gaikar V. G., Pandit A. B. Vacuum pyrolysed biochar for soil amendment. Resour. Technol. 2016:2:S177–S185. https://doi.org/10.1016/j.reffit.2016.11.004">https://doi.org/10.1016/j.reffit.2016.11.00410.1016/j.reffit.2016.11.004
  41. [41] Augustenborg C. A., Hepp S., Kammann C., Hagan D., Schmidt O., Müller C. Biochar and Earthworm Effects on Soil Nitrous Oxide and Carbon Dioxide Emissions. J. Environ. Qual. 2012:41(4):1203. https://doi.org/10.2134/jeq2011.0119">https://doi.org/10.2134/jeq2011.011910.2134/jeq2011.011922751063
  42. [42] Nelissen V., Saha B. K., Ruysschaert G., Boeckx P. Effect of different biochar and fertilizer types on N2O and NO emissions. Soil Biol. Biochem. 2014:70:244–255. https://doi.org/10.1016/j.soilbio.2013.12.026">https://doi.org/10.1016/j.soilbio.2013.12.02610.1016/j.soilbio.2013.12.026
  43. [43] Kirsanovs V., Blumberga D., Dzikevics M., Kovals A. Design of Experimental Investigations on the Effect of Equivalence Ratio, Fuel Moisture Content and Fuel Consumption on Gasification Process. Energy Procedia 2016:95:189–194. https://doi.org/10.1016/j.egypro.2016.09.045">https://doi.org/10.1016/j.egypro.2016.09.04510.1016/j.egypro.2016.09.045
  44. [44] Kirsanovs V., Blumberga D., Veidenbergs I., Rochas C., Vigants E., Vigants G. Experimental investigation of downdraft gasifier at various conditions. Energy Procedia 2017:128:332–338. https://doi.org/10.1016/j.egypro.2017.08.321">https://doi.org/10.1016/j.egypro.2017.08.32110.1016/j.egypro.2017.08.321
  45. [45] Ronsse F., S. van Hecke, Dickinson D., Prins W. Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy 2013:5(2):104–115. https://doi.org/10.1111/gcbb.12018">https://doi.org/10.1111/gcbb.1201810.1111/gcbb.12018
  46. [46] Golubev N. Solid heat carrier technology for oil shale retorting. Oil Shale 2003:20(3):324–332.10.3176/oil.2003.3S.05
  47. [47] Reinik J. et al. Characterization of water extracts of oil shale retorting residues form gaseous and solid heat carrier processes. Fuel Process. Technol. 2015:131:443–451. https://doi.org/10.1016/j.fuproc.2014.12.024">https://doi.org/10.1016/j.fuproc.2014.12.02410.1016/j.fuproc.2014.12.024
  48. [48] Raukas A., Siirde A. New trends in Estonian oil shale industry. Oil Shale 2012:29(3):203–205. https://doi.org/10.3176/oil.2012.3.01">https://doi.org/10.3176/oil.2012.3.0110.3176/oil.2012.3.01
  49. [49] Kirsanovs V. et al. Biomass Gasification for District Heating. Energy Procedia 2017:113:217–223. https://doi.org/10.1016/j.egypro.2017.04.057">https://doi.org/10.1016/j.egypro.2017.04.05710.1016/j.egypro.2017.04.057
  50. [50] Vélez J. F., Chejne F., Valdés C. F., Emery E. J., Londoño C. A. Co-gasification of Colombian coal and biomass in fluidized bed: An experimental study. Fuel 2009:88(3):424–430. https://doi.org/10.1016/j.fuel.2008.10.018">https://doi.org/10.1016/j.fuel.2008.10.01810.1016/j.fuel.2008.10.018
  51. [51] Järvik O., Viiroja A., Kamenev S., Kamenev I. Activated sludge process coupled with intermittent ozonation for sludge yield reduction and effluent water quality control. J. Chem. Technol. Biotechnol. 2011:86(7). https://doi.org/10.1002/jctb.2610">https://doi.org/10.1002/jctb.261010.1002/jctb.2610
  52. [52] Paguio R. R., Saito K. M., Hund J. F., Jimenez R. M. Synthesis of Resorcinol Formaldehyde Aerogel Using UV Photo-Initiators for Inertial Confinement Fusion Experiments. MRS Proc. 2011:1306. https://doi.org/10.1557/opl.2011.476">https://doi.org/10.1557/opl.2011.47610.1557/opl.2011.476
  53. [53] Peikolainen A.-L., Perez-Cabalerro F., Koel M. Low-Density Organic Aerogels From Oil Shale By-Product 5-Methylresorcinol. Oil Shale 2008:25(3):348–358. https://doi.org/10.3176/oil.2008.3.06">https://doi.org/10.3176/oil.2008.3.0610.3176/oil.2008.3.06
  54. [54] Peikolainen A.-L., Volobujeva O., Aav R., Uibu M., Koel M. Organic acid catalyzed synthesis of 5-methylresorcinol based organic aerogels in acetonitrile. J. Porous Mater. 2012:19(2):189–194. https://doi.org/10.1007/s10934-011-9459-8">https://doi.org/10.1007/s10934-011-9459-810.1007/s10934-011-9459-8
DOI: https://doi.org/10.2478/rtuect-2020-0038 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 624 - 637
Published on: Oct 17, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2020 Oliver Jarvik, Mari Sulg, Pau Cascante Cirici, Meelis Eldermann, Alar Konist, Julija Gusca, Andres Siirde, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.