[1] Berger M. A review of measures on reducing heat in tropical and subtropical cities. Sustainable future energy 2012 and 10th SEE Forum: Green, Sustainable, Renewable, Efficient 2012:445–451, November 21–23, Bandar Seri Begawan, Brunei Darussalam.
[2] Tan J., Zheng Y., Tang X., Guo C., Li L., Song G., Zhen X., Yuan D., Kalkstein A. J., Li F., Chen H. The urban heat island and its impact on heat waves and human health in Shanghai. International Journal of Biometeorology 2010:54:75–84. https://doi.org/10.1007/s00484-009-0256-x">https://doi.org/10.1007/s00484-009-0256-x10.1007/s00484-009-0256-x19727842
[4] Cui Y., Yan D., Hong T., Ma J. Temporal and spatial characteristics of the urban heat island in Beijing and the impact on building design and energy performance. Energy 2017:130:286–297. https://doi.org/10.1016/j.energy.2017.04.053">https://doi.org/10.1016/j.energy.2017.04.05310.1016/j.energy.2017.04.053
[6] Shafaghat A., Manteghi G., Keyvanfar A., Bin Lamit H., Saito K., Ossen D. R. Street Geometry Factors Influence Urban Microclimate in Tropical Coastal Cities: A Review. Environmental and Climate Technologies 2016:17(1):61–75. https://doi.org/10.1515/rtuect-2016-0006">https://doi.org/10.1515/rtuect-2016-000610.1515/rtuect-2016-0006
[7] Arnfield A. J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology 2003:23:1–26. https://doi.org/10.1002/joc.859">https://doi.org/10.1002/joc.85910.1002/joc.859
[8] Azevedo J. A., Chapman L. Muller C. L. Quantifying the Daytime and Night-Time Urban Heat Island in Birmingham, UK: A Comparison of Satellite Derived Land Surface Temperature and High Resolution Air Temperature Observations. Remote Sensing 2016:8:153. https://doi.org/10.3390/rs8020153">https://doi.org/10.3390/rs802015310.3390/rs8020153
[9] Oke T. R. The Heat Island of the Urban Boundary Layer: Characteristics, Causes and Effects. Dordrecht: Springer Netherlands, 1995.10.1007/978-94-017-3686-2_5
[10] Al-Hafiz B. Contribution to the Study of the Impact of Building Materials on the Urban Heat Island and the Energy Demand of Buildings. Environmental Engineering. Ensa Nantes. 2017.
[11] Wong E., Akbari H., Bell R., Cole D. Urban Heat Island Basics. Heat Island Compendium. San Francisco: United States Environmental Protection Agency (EPA), 2008.
[14] Georgakis C., Santamouris M. Determination of the Surface and Canopy Urban Heat Islands in Athens Central Zone Using Advance Monitoring. Climate 2017:5(4):97. https://doi.org/10.3390/cli5040097">https://doi.org/10.3390/cli504009710.3390/cli5040097
[15] Olgyay V., Lyndon D., Reynolds J., Yeang K. Design with Climate: Bioclimatic Approach to Architectural Regionalism. New Jersey: Princeton University Press, 1963.
[18] Synnefa A., Santamoris M., Apostolakis K. On the development, optical properties and thermal performance of cool colored coatings for the urban environment. Solar Energy 2007:81(4):488–497. https://doi.org/10.1016/j.solener.2006.08.005">https://doi.org/10.1016/j.solener.2006.08.00510.1016/j.solener.2006.08.005
[19] Fox J., Osmond P., Peters A. The Effect of Building Facade on Outdoor Microclimate–Reflectance Recovery from Terrestrial Multispectral Images Using a Robust Empirical Line Method. Climate 2018:6(3):56. https://doi.org/10.3390/cli6030056">https://doi.org/10.3390/cli603005610.3390/cli6030056
[21] Kakoniti A., Georgiou G., Marakkos K., Kumar P., Neophytou M.K.-A. The role of material selection in the urban heat island effect in dry-mid latitude climates. Environmental Fluid Mechanics 2015:16:347–371. 10.1007/s10652-015-9426-z">http://doi.org/10.1007/s10652-015-9426-z10.1007/s10652-015-9426-z
[24] Golden J. S., Brazel A. J., Salmond J., Laws D. Energy and water sustainability – the role of urban climate change from metropolitan infrastructure. Journal of Engineering and Sustainable Development 2006:1(1):55–70. https://doi.org/10.3992/2166-2517-1.1.55">https://doi.org/10.3992/2166-2517-1.1.5510.3992/2166-2517-1.1.55
[28] Yang Z. Y., Cai W. H., Yang J. Evaluation of MODIS Land Surface Temperature Data to Estimate Near-Surface Air Temperature in Northeast China. Remote Sensing 2017:9(5):410. https://doi.org/10.3390/rs9050410">https://doi.org/10.3390/rs905041010.3390/rs9050410
[29] Tomlinson C. J., Chapman L., Thornes J. E., Baker C. Remote sensing land surface temperature for meteorology and climatology: a review. Meteorological Applications 2011:18:3. https://doi.org/10.1002/met.287">https://doi.org/10.1002/met.28710.1002/met.287
[30] Jeevalaskhmi D., Reddy N., Manikiam B. Land Surface Temperature Retrieval from LANDSAT Data Using Emissivity Estimation. International Journal of Applied Engineering Research 2017:12(20):9679–9687.
[32] Meng X., Cheng J., Zhao S., Liu S., Yao Y. Estimating Land Surface Temperature from Landsat-8 Data using the NOAA JPSS Enterprise Algorithm. Remote Sensing 2018:11(2):155. https://doi.org/10.3390/rs11020155">https://doi.org/10.3390/rs1102015510.3390/rs11020155
[34] Wang S., He L., Hu W. A Temperature and Emissivity Separation Algorithm for Landsat-8 Thermal Infrared Sensor Data. Remote Sensing 2015:7:8:9904–9927. https://doi.org/10.3390/rs70809904">https://doi.org/10.3390/rs7080990410.3390/rs70809904
[35] Ryu Y.-H., Baik J.-J. Quantitative Analysis of Factors Contributing to Urban Heat Island Intensity. Journal of Applied Meteorology and Climatology 2012:51(5):842–854. https://doi.org/10.1175/jamc-d-11-098.1">https://doi.org/10.1175/jamc-d-11-098.110.1175/JAMC-D-11-098.1
[36] Marwasta D. The Influence of Yogyakarta Urban Physical Development to Residential Comfort. The 1st International Conference on South East Asia Study (ICSEAS), 13–14 October 2016, 2018:175–188. https://doi.org/10.18502/kss.v3i5.2332">https://doi.org/10.18502/kss.v3i5.233210.18502/kss.v3i5.2332
[37] Wicahyani S., Sasongko S. B., Izzati M. Pulau Bahang Kota (Urban Heat Island) di Kota Yogyakarta dan Daerah Sekitarnya Hasil Interpretasi Citra Landsat OLITIRS Tahun 2013. Jurnal Geografi 2014:11(2). https://doi.org/10.15294/jg.v11i2.8027">https://doi.org/10.15294/jg.v11i2.8027
[38] Guntoro I. Analisis Urban Heat Island untuk Pengendalian Pemanasan Global di Kota Yogyakarta Menggunakan Citra Penginderaan jauh. Unpublished thesis, Universitas Sebelas Maret, Indonesia, 2012.
[40] Dirksen M., Ronda R. J., Theeuwes N. E., Pagani G. A. Sky view factor calculations and its application in urban heat island studies. Urban Climate 2019:30:100498. https://doi.org/10.1016/j.uclim.2019.100498">https://doi.org/10.1016/j.uclim.2019.10049810.1016/j.uclim.2019.100498
[41] Lin P., Gou Z., Lau S. S.-Y., Qin H. The Impact of Urban Design Descriptors on Outdoor Thermal Environment: A Literature Review. Energies 2017:10(12):2151. https://doi.org/10.3390/en10122151">https://doi.org/10.3390/en1012215110.3390/en10122151
[42] De B., Mukherjee M. Optimizing Street Canyon Orientation for Rajarhat, Newtown, Kolkata, India. Environmental and Climate Technologies 2017:21(1):5–17. https://doi.org/10.1515/rtuect-2017-0012">https://doi.org/10.1515/rtuect-2017-001210.1515/rtuect-2017-0012
[43] Lindberg F., Grimmond C. S. Continuous sky view factor maps for high resolution urban digital elevation model. Climate Research 2010:42:177–183. https://doi.org/10.3354/cr00882">https://doi.org/10.3354/cr0088210.3354/cr00882
[45] Usamentiaga R., Venegas P., Guerediaga J., Vega L., Molleda J., Bulnes F. G. Infrared Thermography for Temperature Measurement and Non-Destructive Testing. Sensors 2014:14:12305–12348. https://doi.org/10.3390/s140712305">https://doi.org/10.3390/s14071230510.3390/s140712305416842225014096
[46] Boue C., Fournier D. Infrared thermography measurement of the thermal parameters (effusivity, diffusivity and conductivity) of materials. Quantitative InfraRed Thermography Journal 2009:16(3–4):175–188. https://doi.org/10.3166/qirt.6.175-188">https://doi.org/10.3166/qirt.6.175-18810.3166/qirt.6.175-188
[51] Xu R., Liu J., Xu J. Extraction of High-Precision Urban Impervious Surfaces from Sentinel-2 Multispectral Imagery via Modified Linier Spectral Mixture Analysis. Sensors 2018:18(9):2873. https://doi.org/10.3390/s18092873">https://doi.org/10.3390/s1809287310.3390/s18092873616522230200304
[52] Ahmed B., Kamruzzaman Md., Zhu X., Rahman Md. S., Choi K. Simulating Land Cover Changes and Their Impacts on Land Surface Temperature in Dhaka, Bangladesh. Remote Sensing 2013:5:11:5969–5998. https://doi.org/10.3390/rs5115969">https://doi.org/10.3390/rs511596910.3390/rs5115969
[53] Chen X., Zhao H., Li P., Yong Z. Remote sensing image based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment 2006:104(2):133–146. https://doi.org/10.1016/j.rse.2005.11.016">https://doi.org/10.1016/j.rse.2005.11.01610.1016/j.rse.2005.11.016
[54] Dash P., Göttsche F.-M., Olesen F.-S., Fischer H. Land surface temperature and emissivity estimation from passive sensor data: theory and practice; current trends. International Journal of Remote Sensing 2002:23(13):2563–2594. https://doi.org/10.1080/01431160110115041">https://doi.org/10.1080/0143116011011504110.1080/01431160110115041
[55] Van de Griend A. A., Owe M. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. International Journal of Remote Sensing 1993:6:1119–1131. https://doi.org/10.1080/01431169308904400">https://doi.org/10.1080/0143116930890440010.1080/01431169308904400
[56] Bonafoni S., Baldineli G., Verducci P., Pescuitti A. Remote Sensing Techniques for Urban Heating Analysis: A Case Study of Sustainable Construction at District Level. Sustainability 2017:9(8):1308. https://doi.org/10.3390/su9081308">https://doi.org/10.3390/su908130810.3390/su9081308
[57] Liang S., Fang H., Chen M. Atmospheric Correction of Landsat ETM+ Land Surface Imagery Part I: Methods. IEEE Transaction on Geoscience and Remote Sensing 2001:39:11:2490–2498. 10.1109/36.964986">http://doi.org/10.1109/36.96498610.1109/36.964986
[58] Mooi E., Sarstedt M. A Concise Guide to Market Research. The Process, Data, and Methods Using IBM SPSS Statistics 3rd Edition. 2011. Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-12541-6">https://doi.org/10.1007/978-3-642-12541-610.1007/978-3-642-12541-6
[62] Moreira A., Bremm C., Fontana D. C., Kuplich T. M. Seasonal dynamic of vegetation indices as a criterion for grouping grassland typologies. Scientia Agricola 2019:76(1):24–72. https://doi.org/10.1590/1678-992x-2017-0173">https://doi.org/10.1590/1678-992x-2017-017310.1590/1678-992x-2017-0173
[63] Schmidt H., Karnieli A. Remote sensing of the seasonal variability of vegetation in a semi-arid environment. Journal of Arid Environments 2000:45(1):43–59. https://doi.org/10.1006/jare.1999.0607">https://doi.org/10.1006/jare.1999.060710.1006/jare.1999.0607
[64] Yuan F., Bauer M. E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment 2007:106(3):375–386. https://doi.org/10.1016/j.rse.2006.09.003">https://doi.org/10.1016/j.rse.2006.09.00310.1016/j.rse.2006.09.003
[65] Alavi Panah S. K., Rezael A. A., Azadi Ghatar S., Jeddi Azgandi H. R. Investigation on impervious surface (ISA) and normalized difference vegetation index (NDVI) as representative parameters of the urban heat island by using satellite imageries. Journal of Geography and Planning 2016:20(55):183–207.