Have a personal or library account? Click to login
Optimal Scheduling of Residential Electricity Demand Based on the Power Management of Hybrid Energy Resources Cover

Optimal Scheduling of Residential Electricity Demand Based on the Power Management of Hybrid Energy Resources

Open Access
|Oct 2020

References

  1. [1] Chamandoust H. et al. Optimal hybrid system design based on renewable energy resources. Proceedings IEEE Smart Grid Conference (SGC), 2017. https://doi.org/10.1109/SGC.2017.830887810.1109/SGC.2017.8308878
  2. [2] Chamandoust H. et al. Scheduling of Smart Micro Grid Considering Reserve and Demand Side Management. Proceedings IEEE Smart Grid Conference (SGC), 2018. https://doi.org/10.1109/SGC.2018.877792610.1109/SGC.2018.8777926
  3. [3] Suter J. F., Shammin R. Residential energy efficiency and conservation measures: A field experiment. Energy Policy 2013:59:551–561. https://doi.org/10.1016/j.enpol.2013.04.003.10.1016/j.enpol.2013.04.003
  4. [4] Sun H., Poor H. V., Hatziargyriou N. D., Carpanini L. Smarter Energy: from Smart Metering to the Smart Grid. IET Digital Library (2016).10.1049/PBPO088E
  5. [5] Wu Y., Tan X., Qian L., Tsang D. H. K., Song W., Yu L. Optimal Pricing and Energy Scheduling for Hybrid Energy Trading Market in Future Smart Grid. IEEE Transactions on Industrial Informatics 2015:11:1585–1596. https://doi.org/10.1109/TII.2015.251418310.1109/TII.2015.2514183
  6. [6] Guodong L., Yan X., Tomsovic K. Bidding Strategy for Microgrid in Day-Ahead Market Based on Hybrid Stochastic/Robust Optimization. IEEE Transaction On Sustainable Energy 2016:7:227-237. https://doi.org/10.1109/TSG.2015.247666910.1109/TSG.2015.2476669
  7. [7] David A. K., Wen F. Strategic Bidding in Competitive Electricity Markets: a Literature Survey. IEEE PEs general meeting 2000:4:2168–2173. https://doi.org/10.1109/PESS.2000.86698210.1109/PESS.2000.866982
  8. [8] Gong C., Wang X., Xu W., Tajer A. Distributed Real-Time Energy Scheduling in Smart Grid: Stochastic Model and Fast Optimization. IEEE Trans. Smart Grid 2013:4:1476–1489. https://doi.org/10.1109/TSG.2013.224839910.1109/TSG.2013.2248399
  9. [9] Vrettos E. I., Papathanassiou S. A. Operating policy and optimal sizing of a high penetration RES-BESS system for small isolated grids. IEEE Trans Energy Convers 2011:26:744–756. https://doi.org/10.1109/TEC.2011.212957110.1109/TEC.2011.2129571
  10. [10] Ruilong D., Zaiyue Y., Yuen Chow M., Chen J. A Survey on Demand Response in Smart Grids: Mathematical Models and Approaches. IEEE Transactions on Industrial Informatics, 2015. https://doi.org/10.1109/TII.2015.241471910.1109/TII.2015.2414719
  11. [11] Albadi M., El-Saadany E. A summary of demand response in electricity markets. Electric Power Systems Research 2008:78(11):1989–1996. https://doi.org/10.1016/j.epsr.2008.04.00210.1016/j.epsr.2008.04.002
  12. [12] Ericson T. Direct load control of residential water heaters. Energy Policy 2009:37(9):3502–3512. https://doi.org/10.1016/j.enpol.2009.03.06310.1016/j.enpol.2009.03.063
  13. [13] Aalami H., Moghaddam M., Yousefi G. Demand response modelling considering interruptible/curtailable loads and capacity market programs. Applied Energy 2010:87(1):243–250. https://doi.org/10.1016/j.apenergy.2009.05.04110.1016/j.apenergy.2009.05.041
  14. [14] Tasdighi M., Ghasemi H., Rahimi-Kian A. Residential microgrid scheduling based on smart meters data and temperature dependent thermal load modeling. IEEE Transactions on Smart Grid 2014:5:349–357. https://doi.org/10.1109/TSG.2013.226182910.1109/TSG.2013.2261829
  15. [15] Laihyuk P., Yongwoon J., Sungrae C., Joongheon K. Residential Demand Response for Renewable Energy Resources in Smart Grid Systems. IEEE Transactions on Industrial Informatics 2017:13:3165–3173. https://doi.org/10.1109/TII.2017.270428210.1109/TII.2017.2704282
  16. [16] Derakhshan G., Shayanfar H. A., Kazemi A. The optimization of demand response programs in smart grids. Energy Policy 2016:94:295–306. https://doi.org/10.1016/j.enpol.2016.04.00910.1016/j.enpol.2016.04.009
  17. [17] Pavithra N., Priya Esther B. Residential demand response using genetic algorithm. Power and Advanced Computing Technologies 2017:1–4. https://doi.org/10.1109/IPACT.2017.824514310.1109/IPACT.2017.8245143
  18. [18] Dlamini N. G., Cromieres F. Implementing peak load reduction algorithms for household electrical appliances. Energy Policy 2012:44:280–290. https://doi.org/10.1016/j.enpol.2012.01.05110.1016/j.enpol.2012.01.051
  19. [19] Terés-Zubiaga J., Campos-Celador A., González-Pino I., Diarce G. The role of the design and operation of individual heating systems for the energy retrofits of residential buildings. Energy Conversion and Management 2016:126:736–747. https://doi.org/10.1016/j.enconman.2016.08.04210.1016/j.enconman.2016.08.042
  20. [20] Ghafoor Memon A., Memon R. Thermodynamic analysis of a trigeneration system proposed for residential application. Energy Conversion and Management 2017:145:182–203. https://doi.org/10.1016/j.enconman.2017.04.08110.1016/j.enconman.2017.04.081
  21. [21] Haider H. T., See O. H., Elmenreich W. A review of residential demand response of smart grid. Renewable and Sustainable Energy Reviews 2016:59:166–178. https://doi.org/10.1016/j.rser.2016.01.01610.1016/j.rser.2016.01.016
  22. [22] Moghaddam A. A., Monsef H., Kian A. R., Guerrero J. M., Vasquez J. C. Optimized energy management of a single-house residential microgrid with automated demand response. IEEE Eindhoven PowerTech 2015:1–6. https://doi.org/10.1109/PTC.2015.723224310.1109/PTC.2015.7232243
  23. [23] Arun S. L., Selvan M. P. Intelligent Residential Energy Management System for Dynamic Demand Response in Smart Buildings. IEEE Systems Journal 2017:12:1329–1340. https://doi.org/10.1109/JSYST.2017.264775910.1109/JSYST.2017.2647759
  24. [24] Chenxi L., Fengji L., Yingying C., Zhao X., Yinan A., Xiao L. Smart home energy management with vehicle-to-home technology. Control & Automation (ICCA). 13th IEEE International Conference on Control and Automation 2017:136–142. https://doi.org/10.1109/ICCA.2017.800304810.1109/ICCA.2017.8003048
  25. [25] Tazvinga H., Zhu B., Xia X. Optimal power flow management for distributed energy resources with batteries. Energy Conversion and Management 2015:102:104–110. https://doi.org/10.1016/j.enconman.2015.01.01510.1016/j.enconman.2015.01.015
  26. [26] Bozchalui M. C., Hashmi S. A., Hassen H., Cañizares C. A., Bhattacharya K. Optimal Operation of Residential Energy Hubs in Smart Grids. IEEE Transactions on smart grid 2012:3:1755–1766. https://doi.org/10.1109/TSG.2012.221203210.1109/TSG.2012.2212032
  27. [27] Pedrasa M. A., Spooner T. D., MacGill I. F. Coordinated Scheduling of Residential Distributed Energy Resources to Optimize Smart Home Energy Services. IEEE Transactions on Smart Grid 2010:1:134–143. https://doi.org/10.1109/TSG.2010.205305310.1109/TSG.2010.2053053
  28. [28] Agnetis A., de Pascale G., Detti P., Vicino A. Load Scheduling for Household Energy Consumption Optimization. IEEE Transactions on Smart Grid 2013:4:2364–2373. https://doi.org/10.1109/TSG.2013.225450610.1109/TSG.2013.2254506
  29. [29] Aghaei J., Alizadeh M. I. Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems). Energy 2013:55:1044–1054. https://doi.org/10.1016/j.energy.2013.04.04810.1016/j.energy.2013.04.048
  30. [30] Nazari-Harris M., Abapour S., Mohammadi-Ivatloo B. Optimal economic dispatch of FC-CHP based heat and power micro-grids. Applied Thermal Engineering 2016:114(5):756–769. https://doi.org/10.1016/j.applthermaleng.2016.12.01610.1016/j.applthermaleng.2016.12.016
  31. [31] Chunyang L., Wang X., Wu X., Guo J. Economic scheduling model of microgrid considering the lifetime of batteries. IET Generation, Transmission & Distribution 2016:11(3):759. https://doi.org/10.1049/iet-gtd.2016.077210.1049/iet-gtd.2016.0772
  32. [32] Aien M., Fotuhi-Firuzabad M., Rashidinejad M. Probabilistic optimal power flow in correlated hybrid wind – photovoltaic power systems. IEEE Trans. Smart Grid 2014:5:130–138. https://doi.org/10.1109/TSG.2013.229335210.1109/TSG.2013.2293352
  33. [33] Cau G., Cocco D., Petrollese M., Knudsen Kaer S., Milan C. Energy management strategy based on short-term generation scheduling for a renewable microgrid using a hydrogen storage system. Energy Conversion and Management 2014:87:820–831. https://doi.org/10.1016/j.enconman.2014.07.07810.1016/j.enconman.2014.07.078
  34. [34] Chamandoust H. et al. Tri-objective scheduling of residential smart electrical distribution grids with optimal joint of responsive loads with renewable energy sources. Journal of Energy Storage 2020:27:101112. https://doi.org/10.1016/j.est.2019.10111210.1016/j.est.2019.101112
  35. [35] Yu R., Yang W., Rahardja R. A statistical demand-price model with its application in optimal real-time price. IEEE Trans. Smart Grid 2012:3:1734–1742. https://doi.org/10.1109/TSG.2012.221740010.1109/TSG.2012.2217400
  36. [36] Syed S. A. et al. Factors Affecting Energy-Efficient Household Products Buying Intention: Empirical Study. Environmental and Climate Technologies 2019:23(1):84–97. https://doi.org/10.2478/rtuect-2019-000610.2478/rtuect-2019-0006
  37. [37] Kittipongvises S., Chavalparit O., Sutthirat C. Greenhouse Gases and Energy Intensity of Granite Rock Mining Operations in Thailand: A Case of Industrial Rock-Construction. Environmental and Climate Technologies 2016:18(1):64–75. https://doi.org/10.1515/rtuect-2016-001410.1515/rtuect-2016-0014
  38. [38] Chamandoust H. et al. Tri-objective optimal scheduling of smart energy hub system with schedulable loads. Journal of Cleaner Production 2019:236:117584. https://doi.org/10.1016/j.jclepro.2019.07.05910.1016/j.jclepro.2019.07.059
  39. [39] Chamandoust H. Economic Scheduling of Micro Grid Based on Energy Management and Demand Response. Electrical, Control and Communication Engineering 2018:14:100–107. https://doi.org/10.2478/ecce-2018-001210.2478/ecce-2018-0012
  40. [40] Bariss U., Bazbauers G., Blumberga A., Blumberga D. System Dynamics Modeling of Households’ Electricity Consumption and Cost-Income Ratio: A Case Study of Latvia. Environmental and Climate Technologies 2017:20(1):36–50. https://doi.org/10.1515/rtuect-2017-000910.1515/rtuect-2017-0009
DOI: https://doi.org/10.2478/rtuect-2020-0036 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 580 - 603
Published on: Oct 15, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2020 Abozar Hashemi, Ghasem Derakshan, M. R. Alizadeh Pahlavani, Babak Abdi, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.