Have a personal or library account? Click to login
Effect of Diesel Fuel Blend on Flame and Emission Characteristics of Used Engine Oil as Heating Fuel Using Swirl Waste Oil Burner Cover

Effect of Diesel Fuel Blend on Flame and Emission Characteristics of Used Engine Oil as Heating Fuel Using Swirl Waste Oil Burner

Open Access
|Oct 2020

References

  1. [1] Yahaya D. B., Diso I. S. Thermo-physical properties of Nigerian used engine oil. Journal of Emerging Trends in Engineering and Applied Sciences 2012:3(2):244–246.
  2. [2] Luka B. S., Ejilah R. I. The Influence of Waste Crankcase Oil Blended Fuel Samples on the Flame and Thermal Behaviour of Atomising Swirl Oil Burner. European Journal of Advances in Engineering and Technology 2017:4(10):770–787.
  3. [3] Baukal E. C. The john zink hamworth combustion book: Design and operation. 2nd Edition. NY, Ohio: CRC Press, 2014.
  4. [4] Grimmer G. PAH kumulierung im Motor schmier S1; PAH emission aus Ottomotoren ErdS1 Erdgas. (PAH accumulation in engine lubrication S1; PAH emission from petrol engines ErdS1 natural gas). Petrochem. 2008:33(19):135. (in German)
  5. [5] Brown M. C. Understanding the difference in engine oils, machinery lubrication. [Online]. [Accessed 23.04.2019]. Available: www.machinerylubrication.com
  6. [6] Daniel B. J. Waste oil burner pre-heater design. US patent no. US WO 20130206046 A1, 2012.
  7. [7] Baukal E. C. Industrial combustion testing. NY, Ohio: CRC Press, Tailor and Francis Group, 2010.10.1201/EBK1420085280
  8. [8] Bairan W. Waste Oil Burner Manual. Bairan Wenling Company. Burner manual. 2015.
  9. [9] Tailor E. Turning used motor oil into heat with a used oil furnace. National rural transit assistance program. 2014.
  10. [10] Hansen T. Reduction firing. Digital fire. [Online]. [Accessed 22.07.2018]. Available: http://digitalfire.com/4sight/glossary_reduction_firing.html
  11. [11] Zakin R. A guide to the ceramic kiln and various firing methods. ceramic arts Network Daily. [Online]. [Accessed 10.10.2018]. Available: http://ceramicartsnetwork.org/daily/clay-tool/ceramic-kiln/guide-ceramic-kiln-various-firing-methods/
  12. [12] Speight J. G., Exall D. I. Refining Used Lubricating Oils. NY, Ohio: CRS Press, 2014.10.1201/b16745
  13. [13] USEPA. Waste Oil Combustion. [Online]. [Accessed 11.09.2018]. Available: www.epa.gov/ttnchie1/le/pompta.pdf
  14. [14] Al-Omar S. B. Used engine lubrication oil as a renewable supplementary fuel for furnaces. Energy Conversion and Management 2008:49(12):3648–3653. https://doi.org/10.1016/j.enconman.2008.07.011">https://doi.org/10.1016/j.enconman.2008.07.01110.1016/j.enconman.2008.07.011
  15. [15] Aji I. S., El-Jummah A. M., Aji M. A., Ifeanyi N. D. Admixture of used engine oil blended with kerosene as a substitute for industrial fuel. Continental Journal of Engineering Sciences 2008:3(6):64–71.
  16. [16] Madu M. J., Aji I. S. Martin, B. Design, construction and testing of a burner that uses an admixture of used engine oil and kerosene for foundry application. International Journal of Innovative Research in Science and Engineering Technology 2011:6(2)23–31. https://doi.orh/10.15680/IJIRSET.2014.0309036
  17. [17] Abu-Elella R., Ossman M. E., Farouq R., Abd-Elfatah M. Used motor oil treatment: turning waste oil into valuable products. International Journal of Chemical and Biochemical Science 2015:4(4):57–67.
  18. [18] Owolabi R. U., Alabi K. A., Oke O. B. Reclamation of spent automobile engine lubricating oil. Fountain Journal of Natural and Applied Science 2013:2(1):11–16.10.53704/fujnas.v2i1.42
  19. [19] Ejilah I. R., Olorunnisola A. A. G., Enyejo L. A. Comparative analysis of the combustion behavior of adulterated kerosene fuel samples in a pressurized kerosene stove. Global Journal of Researches in Engineering 2013:13(6):15–29.
  20. [20] DELEVAN. A Total Look at Oil Burner Nozzles. A Reference Guide for Burner Service Technicians. [Online]. [Accessed 16.01.2017]. Available: www.delevaninc.com/pdf/total_look.pdf
  21. [21] The Engineering ToolBox. Combustion Efficiency and Excess Air. [Online]. [Accessed 03.03.2019]. Available: http://engineeringtoolbox.com/boiler-combustion-efficiency-d_271.html
  22. [22] Stephen B., Londervill F., Charles E., Baukal J. R. The Coen and Hamsworthy combustion handbook, fundamental of power, marine and industrial application. NY, Ohio: CRC Press, 2013.
  23. [23] Williams M. L., Rothamer D. P. The ideal ratio: Stoichiometry of combustion in the chemistry of class room. Great Lake Bio Energy Research Centre. [Online]. [Accessed 11.07.2019]. Available: http://www.glbrc.org
  24. [24] Lockwood F. E., Zhang Z. G., Choi S. U. S., Wang J. C. Thermal characteristics of new and used diesel engine oils. [Online]. [Accessed 17.08.2019]. Available: http://www.oeg.at/fileadmin/Dokumente/oetg/Proceedings/WTTC_2001_files/html/M-21-27-729
  25. [25] ASTM. Standard parts 17 and 18. American Society of Testing and Materials. Philadelphia, Pennsylvania, U.S.A.: ASTM, 1990.
  26. [26] Presser C., Gupta A. K., Avedisian C. T., Semerjian H. G. Fuel property effects on the structure of spray flames. Symposiums (international) on Combustion 1991:23(1):1361–1337. https://doi.org/10.1016/S0082-0784(06)80401-7">https://doi.org/10.1016/S0082-0784(06)80401-710.1016/S0082-0784(06)80401-7
  27. [27] Elorf A., Sar B. Excess air ratio effects of flow and combustion characteristics of pulverized biomass (olive cake). Case Studies in Thermal Engineering 2019:13:24–32. 10.1016/j.csite.2018.100367">http://doi.org/10.1016/j.csite.2018.10036710.1016/j.csite.2018.100367
  28. [28] Wang C. H., Liu X. Q., Law C. K. Combustion and micro explosion of freely falling multi-component droplet. Combustion and Flame 1984:56(2):75–97. https://doi.org/10.1016/0010-2180(84)90036-1">https://doi.org/10.1016/0010-2180(84)90036-110.1016/0010-2180(84)90036-1
  29. [29] Wang C. H., Law C. K. Microexplosion of fuel under high pressure. Combustion and Flame 1985:59(1):53–62. https://doi.org/10.1016/0010-2180(85)90057-4">https://doi.org/10.1016/0010-2180(85)90057-410.1016/0010-2180(85)90057-4
  30. [30] Frank B. A Guide to Assist in Evaluating Liquid Fuel Flames. [Online]. [Accessed 14.09.2016] Available: https://www.scribd.com/document/153939006/A-Guide-to-Assist-in-Evaluating-Liquid-Fuel-Flames
  31. [31] Ahmed M., Ahmed M., Gad M. S., Ahmed E. F. Effect of waste cooking-diesel oils blends on the performance, emission and combustion characteristics of industrial oil burners. International Journal for Research in Applied Science and Engineering Technology 2017:5:9:1264–1274.10.22214/ijraset.2017.9182
  32. [32] TSI. Combustion analysis: Combustion Analysis Basic. [Online]. [Accessed 10.04.2018]. Available: www.tsi.com
  33. [33] Chu H. Flame temperature. [Online]. [Accessed 11.06.2017]. Available: myweb.ncku.edu.tw/~chuhsin/ppt/combustion%20principles%20and%20control/04-Flame%20Temperature.ppt
  34. [34] Chen W. H., Liao C. Y., Hung C. I., Huang W. L. Experimental study on thermoelectric modules for power generation at various operating conditions. Energy 2012:45(1):874–881. https://doi.org/10.1016/j.energy.2012.06.076">https://doi.org/10.1016/j.energy.2012.06.07610.1016/j.energy.2012.06.076
  35. [35] Beckwith T. G., Marangoni R. D., Lienhard J. H. Mechanical Measurements. New Jersey: Prentice Hall, 2007.
  36. [36] Cakmak A., Kapusuz M., Ganiyev O., Ozcan H. Effects of Methyl Acetate as Oxygenated Fuel Blending on Performance and Emissions of SI Engine. Environmental and Climate Technologies 2018:22:55–6. https://doi.org/10.2478/rtuect-2018-0004">https://doi.org/10.2478/rtuect-2018-000410.2478/rtuect-2018-0004
  37. [37] Shehata M. S., Elkotb M. M., Salem H. Combustion Characteristics for Turbulent Prevaporized Premixed Flame Using Commercial Light Diesel and Kerosene Fuels. Journal of Combustion 2014:363465. 10.1155/2014/363465">http://dx.doi.org/10.1155/2014/36346510.1155/2014/363465
  38. [38] Bergmann J. Performing a combustion analysis. [Online]. [Accessed 11.7.2018]. Available: www.achrnews.com/articles/106070-performing-a-combustion-analysis
  39. [39] Jon H., Van G., Charles L. P., Carroll E. G. Biodiesel: An Alternative Fuel for Compression Ignition Engines. ASABE Distinguished Lecture Series No. 31, ASABE, 2007.
  40. [40] Bhatia A. Improving Energy Efficiency of Boiler Systems. PDH online Course M166 (4 PDH). [Online]. [Accessed 01.11.2017]. Available: https://www.pdhonline.com/courses/m166/m166content.pdf
  41. [41] Gong X., Liu Z., Jiang H. Emission and thermal efficiency investigation of a pulverized submerged combustion evaporator. International Journal of Low-Carbon Technology 2012:7(4):257–263. https://doi.org/10.1093/ijlct/cts059">https://doi.org/10.1093/ijlct/cts05910.1093/ijlct/cts059
DOI: https://doi.org/10.2478/rtuect-2020-0034 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 545 - 561
Published on: Oct 10, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2020 Bobby Shekarau Luka, Robinson Ichakpa Ejilah, Sampson Chisa Owhor, Joseph Ajiya Japhet, Tanimu Kogi Ibrahim, Paul Okon Udom, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.