Have a personal or library account? Click to login
A Comparative Study of Dynamic Load Response of High Temperature PEM Fuel Cells Cover

A Comparative Study of Dynamic Load Response of High Temperature PEM Fuel Cells

Open Access
|Oct 2020

References

  1. [1] Staffell I., Scamman D., Abad A. V., Balcombe P., Dodds P. E., Ekins P., Shah N., Ward K. R. The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science 2019:12:463–491. https://doi.org/10.1039/C8EE01157E10.1039/C8EE01157E
  2. [2] Blumberga D., Chen B., Ozarska A., Indzere Z., Lauka D. Energy, Bioeconomy, Climate Changes and Environment Nexus. Environmental and Climate Technologies 2019:23:370–392. https://doi.org/10.2478/rtuect-2019-010210.2478/rtuect-2019-0102
  3. [3] Wang Y., Chen K. S., Mishler J., Cho S. C., Adroher X. C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy 2011:88(4):981–1007. https://doi.org/10.1016/j.apenergy.2010.09.03010.1016/j.apenergy.2010.09.030
  4. [4] Zhang J., Xie Z., Zhang J., Tang Y., Song C., Navessin T., Shi Z., Song D., Wang H., Wilkinson D. P., Liu Z.-S., Holdcroft S. High temperature PEM fuel cells. Journal of Power Sources 2006:160(2):872–891. https://doi.org/10.1016/j.jpowsour.2006.05.03410.1016/j.jpowsour.2006.05.034
  5. [5] Yang C., Costamagna P., Srinivasan S., Benziger J., Bocarsly A. B. Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells. Journal of Power Sources 2001:103(1):1–9. https://doi.org/10.1016/S0378-7753(01)00812-610.1016/S0378-7753(01)00812-6
  6. [6] Pan C., He R., Li Q., Jensen J. O., Bjerrum N. J., Hjulmand H. A., Jensen A. B. Integration of high temperature PEM fuel cells with a methanol reformer. Journal of Power Sources 2005:145(2):392–398. https://doi.org/10.1016/j.jpowsour.2005.02.05610.1016/j.jpowsour.2005.02.056
  7. [7] Büsselmann J., Rastedt M., Tullius V., Yezerska K., Dyck A., Wagner P. Evaluation of HT-PEM MEAs: Load cycling versus start/stop cycling. International Journal of Hydrogen Energy 2019:44(35):19384–19394. https://doi.org/10.1016/j.ijhydene.2018.07.18110.1016/j.ijhydene.2018.07.181
  8. [8] Büsselmann J., Rastedt M., Klicpera T., Reinwald K., Schmies H., Dyck A., Wagner P. Analysis of HT-PEM MEAs’ Long-Term Stabilities. Energies 2020:13(3):567. https://doi.org/10.3390/en1303056710.3390/en13030567
  9. [9] Jeon Y., Na H., Hwang H., Park J., Hwang H., Shul Y.-G. Accelerated life-time test protocols for polymer electrolyte membrane fuel cells operated at high temperature. International Journal of Hydrogen Energy 2015:40(7):3057–3067. https://doi.org/10.1016/j.ijhydene.2015.01.01010.1016/j.ijhydene.2015.01.010
  10. [10] Kannan A., Kabza A., Scholta J. Long-term testing of start-stop cycles on high temperature PEM fuel cell stack. Journal of Power Sources 2015:277:312–316. https://doi.org/10.1016/j.jpowsour.2014.11.11510.1016/j.jpowsour.2014.11.115
  11. [11] Zhang S., Yuan X., Wang H., Merida W., Zhu H., Shen J., Wu S., Zhang J. A review of accelerated stress tests of MEA durability in PEM fuel cells. International Journal of Hydrogen Energy 2009:34:388–404. https://doi.org/10.1016/j.ijhydene.2008.10.01210.1016/j.ijhydene.2008.10.012
  12. [12] Schonvogel D., Rastedt M., Wagner P., Wark M., Dyck A. Impact of Accelerated Stress Tests on High Temperature PEMFC Degradation. Fuel Cells 2016:16(4):480–489. https://doi.org/10.1002/fuce.20150016010.1002/fuce.201500160
  13. [13] Rosli R. E., Sulong A. B., Daud W. R. W., Zulkifley M. A., Husaini T., Rosli M. I., Majlan E. H., Haque M. A. A review of high – temperature proton exchange membrane fuel cell (HT-PEMFC) system. International Journal of Hydrogen Energy 2017:42(14):9293–9314. https://doi.org/10.1016/j.ijhydene.2016.06.21110.1016/j.ijhydene.2016.06.211
  14. [14] Chandan A., Hattenberger M., El-kharouf A., Du S., Dhir A., Self V., Pollet B. G., Ingram A., Bujalski W. High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) – A review. Journal of Power Sources 2013:231:264–278. https://doi.org/10.1016/j.jpowsour.2012.11.12610.1016/j.jpowsour.2012.11.126
  15. [15] Klavins M., Bisters V., Burlakovs J. Small Scale Gasification Application and Perspectives in Circular Economy. Environmental and Climate Technologies 2018:22:42–54. https://doi.org/10.2478/rtuect-2018-000310.2478/rtuect-2018-0003
  16. [16] Ozola Z. U., Vesere R., Kalnins S. N., Blumberga D. Paper Waste Recycling. Circular Economy Aspects. Environmental and Climate Technologies 2019:23:260–273. https://doi.org/10.2478/rtuect-2019-009410.2478/rtuect-2019-0094
  17. [17] Stevens D. A., Dahn J. R. Thermal degradation of the support in carbon-supported electrocatalysts for PEM fuel cells. Carbon 2005:43(1):179–188. https://doi.org/10.1016/j.carbon.2004.09.00410.1016/j.carbon.2004.09.004
  18. [18] Daud N. A. B, Abouzari Lotf E., Sophia Sha’rani S., Nasef M. M., Ahmad A., Rasit Ali R. Efforts to Improve PBI/Acid Membrane System for High Temperature Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC). E3S Web of Conferences 2019:90:01002. https://doi.org/10.1051/e3sconf/2019900100210.1051/e3sconf/20199001002
  19. [19] Zhang J., Aili D., Lu S., Li Q., Jiang S. P. Advancement toward Polymer Electrolyte Membrane Fuel Cells at Elevated Temperatures. AAAS Research 2020:2020:9089405. https://doi.org/10.34133/2020/908940510.34133/2020/9089405729835332566932
  20. [20] Sun X., Simonsen S. C., Norby T., Chatzitakis A. Composite Membranes for High Temperature PEM Fuel Cells and Electrolysers: A Critical Review. Membranes 2019:9(7):83. https://doi.org/10.3390/membranes907008310.3390/membranes9070083668083531336708
  21. [21] Sharaf O. Z., Orhan M. F. An overview of fuel cell technology: Fundamentals and applications. Renewable & Sustainable Energy Reviews 2014:32:810–853. https://doi.org/10.1016/j.rser.2014.01.01210.1016/j.rser.2014.01.012
  22. [22] Wu J., Yuan X. Z., Martin J. J., Wang H., Zhang J., Shen J., Wu S., Merida W. A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. Journal of Power Sources 2008:184(1):104–119. https://doi.org/10.1016/j.jpowsour.2008.06.00610.1016/j.jpowsour.2008.06.006
  23. [23] Park J. O., Hong S.-G. Design and optimization of HT-PEMFC MEAs. In: Li Q., Aili D., Hjuler H.A., Jensen J.O. (eds.), High temperature polymer electrolyte membrane fuel cells. Dordrecht: Springer, 2016, 331–352. https://doi.org/10.1007/978-3-319-17082-4_1610.1007/978-3-319-17082-4_16
  24. [24] Lai Y.-H., Rahmoeller K. M., Hurst J. H., Kukreja R. S., Atwan M., Maslyn A. J., Gittleman C. S. Accelerated Stress Testing of Fuel Cell Membranes Subjected to Combined Mechanical/Chemical Stressors and Cerium Migration, Journal of the Electrochemical Society 2018:165:F3217–F3229. https://doi.org/10.1149/2.0241806jes10.1149/2.0241806jes
  25. [25] Spernjak D., Fairweather J., Rockward T., Mukundan R., Borup R. L. Characterization of carbon corrosion in a segmented PEM fuel cell. ECS Transactions 2011:41:741–750. https://doi.org/10.1149/1.363560810.1149/1.3635608
  26. [26] Bloom I., Walker L. K., Basco J. K., Malkow T., Saturnio A., De Marco G., Tsotridis G. A comparison of fuel cell testing protocols – A case study: Protocols used by the U.S. Department of Energy, European Union, International Electrotechnical Commission/Fuel Cell Testing and Standardization Network, and Fuel Cell Technical Team. Journal of Power Sources 2013:243:451–457. https://doi.org/10.1016/j.jpowsour.2013.06.02610.1016/j.jpowsour.2013.06.026
  27. [27] FCTestNet/FCTesQA. Test module PEFC SC 5-2. Testing the voltage and the power as a function of the current density. Polarisation curve for a PEFC single cell. Technical report, European Commission Joint Research Centre, Institute for Energy, 2010.
  28. [28] Gode P., Jaouen F., Lindbergh G., Lundblad A., Sundholm G. Influence of the composition on the structure and electrochemical characteristics of the PEFC cathode. Electrochimica Acta 2003:48(28):4175–4187. https://doi.org/10.1016/S0013-4686(03)00603-010.1016/S0013-4686(03)00603-0
  29. [29] Yuan X. Z., Wang H., Sun J. C., Zhang J. AC impedance technique in PEM fuel cell diagnosis – A review. International Journal of Hydrogen Energy 2007:32(17):4365–4380. https://doi.org/10.1016/j.ijhydene.2007.05.03610.1016/j.ijhydene.2007.05.036
  30. [30] Cooper K. R., Smith M. Electrical test methods for on-line fuel cell ohmic resistance measurement. Journal of Power Sources 2006:160(2):1088–1095. https://doi.org/10.1016/j.jpowsour.2006.02.08610.1016/j.jpowsour.2006.02.086
  31. [31] Yuan X. Z., Song C., Wang H., Zhang J. Electrochemical impedance spectroscopy in PEM fuel cells: Theory and practice. London: Springer, 2010. https://doi.org/10.1007/978-1-84882-846-910.1007/978-1-84882-846-9
  32. [32] Jespersen J. L., Schaltz E., Kaer S. K. Electrochemical characterization of a polybenzimidazole-based high temperature proton exchange membrane unit cell. Journal of Power Sources 2009:191(2):289–296. https://doi.org/10.1016/j.jpowsour.2009.02.02510.1016/j.jpowsour.2009.02.025
  33. [33] Chang W. R., Hwang J. J., Weng F. B., Chan S. H. Effect of clamping pressure on the performance of a PEM fuel cell. Journal of Power Sources 2007:166(1):149–154. https://doi.org/10.1016/j.jpowsour.2007.01.01510.1016/j.jpowsour.2007.01.015
  34. [34] Mukundan R., Baker A. M., Kusoglu A., Beattie P., Knights S., Weber A. Z., Borup R. L. Membrane Accelerated Stress Test Development for Polymer Electrolyte Fuel Cell Durability Validated Using Field and Drive Cycle Testing. Journal of the Electrochemical Society 2018:165:F3085–F3093. https://doi.org/10.1149/2.0101806jes10.1149/2.0101806jes
  35. [35] Yuan X. Z., Sun J. C., Wang H., Li H. Accelerated conditioning for a proton exchange membrane fuel cell. Journal of Power Sources 2012:205:340–344. https://doi.org/10.1016/j.jpowsour.2012.01.03910.1016/j.jpowsour.2012.01.039
  36. [36] Stariha S., Macauley N., Sneed B. T., Langlois D., More K. L., Mukundan R., Borup R. L. Recent Advances in Catalyst Accelerated Stress Tests for Polymer Electrolyte Membrane Fuel Cells. Journal of the Electrochemical Society 2018:165:F492–F501. https://doi.org/10.1149/2.0881807jes10.1149/2.0881807jes
DOI: https://doi.org/10.2478/rtuect-2020-0033 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 529 - 544
Published on: Oct 1, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2020 Martin Tomas, Pavel Novotny, Fatemeh Gholami, Ondrej Tucek, Frantisek Marsik, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.