[1] Staffell I., Scamman D., Abad A. V., Balcombe P., Dodds P. E., Ekins P., Shah N., Ward K. R. The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science 2019:12:463–491. https://doi.org/10.1039/C8EE01157E10.1039/C8EE01157E
[8] Büsselmann J., Rastedt M., Klicpera T., Reinwald K., Schmies H., Dyck A., Wagner P. Analysis of HT-PEM MEAs’ Long-Term Stabilities. Energies 2020:13(3):567. https://doi.org/10.3390/en1303056710.3390/en13030567
[9] Jeon Y., Na H., Hwang H., Park J., Hwang H., Shul Y.-G. Accelerated life-time test protocols for polymer electrolyte membrane fuel cells operated at high temperature. International Journal of Hydrogen Energy 2015:40(7):3057–3067. https://doi.org/10.1016/j.ijhydene.2015.01.01010.1016/j.ijhydene.2015.01.010
[13] Rosli R. E., Sulong A. B., Daud W. R. W., Zulkifley M. A., Husaini T., Rosli M. I., Majlan E. H., Haque M. A. A review of high – temperature proton exchange membrane fuel cell (HT-PEMFC) system. International Journal of Hydrogen Energy 2017:42(14):9293–9314. https://doi.org/10.1016/j.ijhydene.2016.06.21110.1016/j.ijhydene.2016.06.211
[14] Chandan A., Hattenberger M., El-kharouf A., Du S., Dhir A., Self V., Pollet B. G., Ingram A., Bujalski W. High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) – A review. Journal of Power Sources 2013:231:264–278. https://doi.org/10.1016/j.jpowsour.2012.11.12610.1016/j.jpowsour.2012.11.126
[18] Daud N. A. B, Abouzari Lotf E., Sophia Sha’rani S., Nasef M. M., Ahmad A., Rasit Ali R. Efforts to Improve PBI/Acid Membrane System for High Temperature Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC). E3S Web of Conferences 2019:90:01002. https://doi.org/10.1051/e3sconf/2019900100210.1051/e3sconf/20199001002
[23] Park J. O., Hong S.-G. Design and optimization of HT-PEMFC MEAs. In: Li Q., Aili D., Hjuler H.A., Jensen J.O. (eds.), High temperature polymer electrolyte membrane fuel cells. Dordrecht: Springer, 2016, 331–352. https://doi.org/10.1007/978-3-319-17082-4_1610.1007/978-3-319-17082-4_16
[24] Lai Y.-H., Rahmoeller K. M., Hurst J. H., Kukreja R. S., Atwan M., Maslyn A. J., Gittleman C. S. Accelerated Stress Testing of Fuel Cell Membranes Subjected to Combined Mechanical/Chemical Stressors and Cerium Migration, Journal of the Electrochemical Society 2018:165:F3217–F3229. https://doi.org/10.1149/2.0241806jes10.1149/2.0241806jes
[25] Spernjak D., Fairweather J., Rockward T., Mukundan R., Borup R. L. Characterization of carbon corrosion in a segmented PEM fuel cell. ECS Transactions 2011:41:741–750. https://doi.org/10.1149/1.363560810.1149/1.3635608
[26] Bloom I., Walker L. K., Basco J. K., Malkow T., Saturnio A., De Marco G., Tsotridis G. A comparison of fuel cell testing protocols – A case study: Protocols used by the U.S. Department of Energy, European Union, International Electrotechnical Commission/Fuel Cell Testing and Standardization Network, and Fuel Cell Technical Team. Journal of Power Sources 2013:243:451–457. https://doi.org/10.1016/j.jpowsour.2013.06.02610.1016/j.jpowsour.2013.06.026
[27] FCTestNet/FCTesQA. Test module PEFC SC 5-2. Testing the voltage and the power as a function of the current density. Polarisation curve for a PEFC single cell. Technical report, European Commission Joint Research Centre, Institute for Energy, 2010.
[34] Mukundan R., Baker A. M., Kusoglu A., Beattie P., Knights S., Weber A. Z., Borup R. L. Membrane Accelerated Stress Test Development for Polymer Electrolyte Fuel Cell Durability Validated Using Field and Drive Cycle Testing. Journal of the Electrochemical Society 2018:165:F3085–F3093. https://doi.org/10.1149/2.0101806jes10.1149/2.0101806jes
[36] Stariha S., Macauley N., Sneed B. T., Langlois D., More K. L., Mukundan R., Borup R. L. Recent Advances in Catalyst Accelerated Stress Tests for Polymer Electrolyte Membrane Fuel Cells. Journal of the Electrochemical Society 2018:165:F492–F501. https://doi.org/10.1149/2.0881807jes10.1149/2.0881807jes