[3] Chen S., Doolen G. D. Lattice Boltzmann Method for Fluid Flows. Annual Review of Fluid Mechanics 2002:30(1):329–364. https://doi.rg/10.1146/annurev.fluid.30.1.32910.1146/annurev.fluid.30.1.329
[12] Wang Y., et al. Multiphase lattice Boltzmann flux solver for incompressible multiphase flows with large density ratio. Journal of Computational Physics 2015:280:404–423. https://doiorg/10.1016/j.jcp.2014.09.03510.1016/j.jcp.2014.09.035
[14] Chin J., Boek E. S., Coveney P. V. Lattice Boltzmann simulation of the flow of binary immiscible fluids with different viscosities using the Shan-Chen microscopic interaction model. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2002:547–558. https://doi.org/10.1098/rsta.2001.095310.1098/rsta.2001.095316214694
[15] Grosfils P., et al. Structural and dynamical characterization of Hele-Shaw viscous fingering. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2004:1723–1734. https://doi.org/10.1098/rsta.2004.139810.1098/rsta.2004.139815306442
[18] Bhatnagar P. L., Gross E. P., Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical Review 1954:94(3):511. https://doi.org/10.1103/PhysRev.94.51110.1103/PhysRev.94.511
[19] He X., Luo L. S. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 1997:55(6):6811–6820. https://doi.org/10.1103/PhysRevE.56.681110.1103/PhysRevE.56.6811
[22] Chen Z., Shu C., Tan D. Three-dimensional simplified and unconditionally stable lattice Boltzmann method for incompressible isothermal and thermal flows. Physics of Fluids 2017:29(5). https://doi.org/10.1063/1.498333910.1063/1.4983339
[24] Sbragaglia M., Succi S. Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions. Physics of Fluids 2005:17(9):1–8. https://doi.org/10.1063/1.204482910.1063/1.2044829
[27] Dhaundiyal A., Tewari, P. Kinetic parameters for the thermal decomposition of forest waste using distributed activation energy model (DAEM). Environmental and Climate Technologies 2017:19(1):15–32. https://doi.org/10.1515/rtuect-2017-000210.1515/rtuect-2017-0002