Have a personal or library account? Click to login
Multi-Criteria Decision Analysis Methods Comparison Cover

References

  1. [1] Langemeyer J., Gomez-Baggethun E., Haase D., Scheuer S., Elmqvist T. Bridging the gap between ecosystem service assessments and land-use planning through Multi-Criteria Decision Analysis (MCDA). Environmental Science & Policy 2016:62:45–56. https://doi.org/10.1016/j.envsci.2016.02.01310.1016/j.envsci.2016.02.013
  2. [2] Ishizaka A., Nemery P. Multi-Criteria Decision Analysis. John Wiley & Sons, 2013.10.1002/9781118644898
  3. [3] Yazdani M., Payam A. F. A comparative study on material selection of microelectromechanical systems electrostatic actuators using Ashby, VIKOR and TOPSIS. Materials & Design 2015:65:328–334. https://doi.org/10.1016/j.matdes.2014.09.00410.1016/j.matdes.2014.09.004
  4. [4] Debbarma B., Chakraborti P., Bose P. K., Deb M., Banerjee R. Exploration of PROMETHEE II and VIKOR methodology in a MCDM approach for ascertaining the optimal performance-emission trade-off vantage in a hydrogen-biohol dual fuel endeavour. Fuel 2017:210:922–935. https://doi.org/10.1016/j.fuel.2017.08.01610.1016/j.fuel.2017.08.016
  5. [5] Chen Y., Ran Y., Wang Z., Li X., Yang X., Zhang G. An extended MULTIMOORA method based on OWGA operator and Choquet integral for risk prioritization identification of failure modes. Engineering Applications of Artificial Intelligence 2020:91:103605. https://doi.org/10.1016/j.engappai.2020.10360510.1016/j.engappai.2020.103605
  6. [6] Obayiuwana E., Falowo O. A multimoora approach to access network selection process in heterogeneous wireless networks. IEEE AFRICON Conf. 2015. https://doi.org/10.1109/AFRCON.2015.7331973.10.1109/AFRCON.2015.7331973
  7. [7] Sennaroglu B., Varlik Celebi G. A military airport location selection by AHP integrated PROMETHEE and VIKOR methods. Transportation Research Part D: Transport and Environment 2018:59:160–173. https://doi.org/10.1016/j.trd.2017.12.02210.1016/j.trd.2017.12.022
  8. [8] Garg R., Jain D. Fuzzy multi-attribute decision making evaluation of e-learning websites using FAHP, COPRAS, VIKOR, WDBA. Decision Science Letters 2017:6(4):351–364. https://doi.org/10.5267/j.dsl.2017.2.003.10.5267/j.dsl.2017.2.003
  9. [9] Fakhrehosseini S. F. Selecting the Optimal Industrial Investment by Multi-Criteria Decision-Making Methods with Emphasis on TOPSIS, VIKOR and COPRAS (Case Study of Guilan Province). International Journal of Research in Industrial Engineering 2020:8(4):312–324. https://doi.org/10.22105/riej.2020.216548.1117
  10. [10] Batur Sir G. D., Çalışkan E. Assessment of development regions for financial support allocation with fuzzy decision making: A case of Turkey. Socio-Economic Planning Sciences 2019:66:161–169. https://doi.org/10.1016/j.seps.2019.02.00510.1016/j.seps.2019.02.005
  11. [11] Leal J. E. AHP-express : A simplified version of the analytical hierarchy process method. MethodsX 2020:7:100748. https://doi.org/10.1016/j.mex.2019.11.02110.1016/j.mex.2019.11.021699301332021813
  12. [12] Opricovic S. Compromise solution by MCDM methods : A comparative analysis of VIKOR and TOPSIS. 2004:156(2):445–455. https://doi.org/10.1016/S0377-2217(03)00020-110.1016/S0377-2217(03)00020-1
  13. [13] Chatterjee P., Manikrao V., Chakraborty S. Materials selection using complex proportional assessment and evaluation of mixed data methods. Materials & Designs 2011:32(2):851–860. https://doi.org/10.1016/j.matdes.2010.07.01010.1016/j.matdes.2010.07.010
  14. [14] Ajrina A. S., Sarno R., Hari Ginardi R. V. Comparison of MOORA and COPRAS Methods Based on Geographic Information System For Determining Potential Zone of Pasir Batu Mining. International Conference on Information and Communications Technology, ICOIACT 2019:360–365. https://doi.org/10.1109/ICOIACT46704.2019.893846510.1109/ICOIACT46704.2019.8938465
  15. [15] Suharevska, K., Blumberga, D. Progress in Renewable Energy Technologies: Innovation Potential in Latvia. Environmental and Climate Technologies 2019:23(2):47–63. https://doi.org/10.2478/rtuect-2019-005410.2478/rtuect-2019-0054
  16. [16] Whiteman, A., Sohn, H., Esparrago, J., Arkhipova, I., and Elsayed S. Renewable Capacity Statistics. IRENA, 2018. [Online]. [Accessed: April 7, 2020]. Available: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Mar/IRENA_RE_Capacity_Statistics_2018.pdf
  17. [17] A. Ilas, P. Ralon, A. Rodriguez, and M. Taylor. Renewable Power Generation Costs in 2018. International Renewable Energy Agency, IRENA, 2018. [Online]. [Accessed: April 8, 2020]. Available: https://www.irena.org/publications/2019/May/Renewable-power-generation-costs-in-2018
  18. [18] US Energy Information Administration. Levelized Cost and Levelized Avoided Cost of New Generation Resources. Annual Energy Outlook 2019. [Online]. [Accessed: April 8, 2020]. Available: http://www.eia.gov/forecasts/aeo/pdf/electricity_generation.pdf.
  19. [19] European Environment Agency. Renewable Energy in Europe – 2017 Update. EEA Report, No. 23/2017 [Online]. [Accessed: April 7, 2020]. Available: https://www.eea.europa.eu//publications/renewable-energy-in-europe
  20. [20] World Nuclear Association. Comparison of Lifecycle Greenhouse Gas Emissions of Various Electricity Generation Sources. WNA Report, 2011. [Online]. [Accessed: April 7, 2020]. Available: http://www.world-nuclear.org/uploadedFiles/org/WNA/Publications/Working_Group_Reports/comparison_of_lifecycle.pdf
  21. [21] Ferroukhi, R., Khalid, A., García-Baños, C., and Renner, M. Renewable Energy and Jobs – Annual Review 2017. IRENA, 2017. [Online]. [Accessed: April 8, 2020]. Available: https://www.irena.org/publications/2017/May/Renewable-Energy-and-Jobs--Annual-Review-2017
  22. [22] Saaty T. L., Ozdemir M. S. Why the magic number seven plus or minus two. Mathematical and Computer Modelling 2003:38(3–4):233–244. https://doi.org/10.1016/S0895-7177(03)90083-510.1016/S0895-7177(03)90083-5
  23. [23] Kablan M. M. Decision support for energy conservation promotion: An analytic hierarchy process approach. Energy Policy 2004:32(10):1151–1158. https://doi.org/10.1016/S0301-4215(03)00078-810.1016/S0301-4215(03)00078-8
  24. [24] Opricovic S. Extended VIKOR method in comparison with outranking methods. European Journal of Operational Research 2007:178:514–529. https://doi.org/10.1016/j.ejor.2006.01.02010.1016/j.ejor.2006.01.020
  25. [25] Hafezalkotob A., Hafezalkotob A. Interval target-based VIKOR method supported on interval distance and preference degree for machine selection. Engineering Applications of Artificial Intelligence 2017:57:184–196. https://doi.org/10.1016/j.engappai.2016.10.01810.1016/j.engappai.2016.10.018
  26. [26] Sayadi M. K., Heydari M., Shahanaghi K. Extension of VIKOR method for decision making problem with interval numbers. Applied Mathematical Modelling 2009:33(5):2257–2262. https://doi.org/10.1016/j.apm.2008.06.00210.1016/j.apm.2008.06.002
  27. [27] Nuuter T., Lill I., Tupenaite L. Land Use Policy Comparison of housing market sustainability in European countries based on multiple criteria assessment. Land Use Policy 2015:42:642–651. https://doi.org/10.1016/j.landusepol.2014.09.02210.1016/j.landusepol.2014.09.022
  28. [28] Hafezalkotob A., Hafezalkotob A., Kazem M. Extension of MULTIMOORA method with interval numbers: An application in materials selection. Applied Mathematical Modelling 2016:40(2):1372–1386. https://doi.org/10.1016/j.apm.2015.07.01910.1016/j.apm.2015.07.019
  29. [29] Karande P., Chakraborty S. Application of multi-objective optimization on the basis of ratio analysis (MOORA) method for materials selection. Materials & Design 2012:37:317–324. https://doi.org/10.1016/j.matdes.2012.01.01310.1016/j.matdes.2012.01.013
  30. [30] Mareschal, B. Visual PROMETHEE 1.4 Manual. VPSolutions 2012-2013:1–192. [Online]. [Accessed: April 9, 2020]. Available: http://www.promethee-gaia.net/files/VPManual.pdf
DOI: https://doi.org/10.2478/rtuect-2020-0028 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 454 - 471
Published on: Jul 1, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2020 Beate Zlaugotne, Lauma Zihare, Lauma Balode, Antra Kalnbalkite, Aset Khabdullin, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.