Have a personal or library account? Click to login
Adaptation of TIMES Model Structure to Industrial, Commercial and Residential Sectors Cover

Adaptation of TIMES Model Structure to Industrial, Commercial and Residential Sectors

Open Access
|Jun 2020

References

  1. [1] Burandt T., Xiong B., Löffler K., Oei P. Y. Decarbonizing China’s energy system – Modeling the transformation of the electricity, transportation, heat, and industrial sectors. Applied Energy 2019:255:113820. https://doi.org/10.1016/j.apenergy.2019.11382010.1016/j.apenergy.2019.113820
  2. [2] Andersen K. S., Termansen L. B., Gargiulo M., Gallachóirc B. P. Ó. Bridging the gap using energy services: Demonstrating a novel framework for soft linking top-down and bottom-up models. Energy 2019:169:277–293. https://doi.org/10.1016/j.energy.2018.11.15310.1016/j.energy.2018.11.153
  3. [3] Wu Y. H., Liu C. H., Hung M. L., Liu T. Y., Masui T. Sectoral energy efficiency improvements in Taiwan: Evaluations using a hybrid of top-down and bottom-up models. Energy Policy 2019:132:1241–1255. https://doi.org/10.1016/j.enpol.2019.06.04310.1016/j.enpol.2019.06.043
  4. [4] Gravelsins A. et al. Modelling energy production flexibility: System dynamics approach. Energy Procedia 2018:147:503–509. https://doi.org/10.1016/j.egypro.2018.07.06010.1016/j.egypro.2018.07.060
  5. [5] Han S., Kim J. An optimization model to design and analysis of renewable energy supply strategies for residential sector. Renewable Energy 2017:112:222–234. https://doi.org/10.1016/j.renene.2017.05.03010.1016/j.renene.2017.05.030
  6. [6] McCallum P. A multi-sectoral approach to modelling community energy demand of the built environment. Energy Policy 2019:132:865–875. https://doi.org/10.1016/j.enpol.2019.06.04110.1016/j.enpol.2019.06.041
  7. [7] Astudillo M. F., Vaillancourt K., Pineau P. O., Amor B. Can the household sector reduce global warming mitigation costs? Sensitivity to key parameters in a TIMES techno-economic energy model. Applied Energy 2017:205:486–498. https://doi.org/10.1016/j.apenergy.2017.07.13010.1016/j.apenergy.2017.07.130
  8. [8] Karali N., Park W. Y., McNeil M. Modeling technological change and its impact on energy savings in the U.S. iron and steel sector. Applied Energy 2017:202:447–458. https://doi.org/10.1016/j.apenergy.2017.05.17310.1016/j.apenergy.2017.05.173
  9. [9] Wiese F., Baldini M. Conceptual model of the industry sector in an energy system model: A case study for Denmark. Journal of Cleaner Production 2018:203:427–443. https://doi.org/10.1016/j.jclepro.2018.08.22910.1016/j.jclepro.2018.08.229
  10. [10] Fleiter T. et al. A methodology for bottom-up modelling of energy transitions in the industry sector: The FORECAST model. Energy Strategy Reviews 2018:22:237–254. https://doi.org/10.1016/j.esr.2018.09.00510.1016/j.esr.2018.09.005
  11. [11] Tash A., Ahanchian M., Fahl U. Improved representation of investment decisions in the German energy supply sector: An optimization approach using the TIMES model. Energy Strategy Reviews 2019:26:100421. https://doi.org/10.1016/j.esr.2019.10042110.1016/j.esr.2019.100421
  12. [12] Balyk O. et al. TIMES-DK: Technology-rich multi-sectoral optimisation model of the Danish energy system. Energy Strategy Reviews 2017:23:13–22. https://doi.org/10.1016/j.esr.2018.11.00310.1016/j.esr.2018.11.003
  13. [13] Li P. H., Keppo I., Strachan N. Incorporating homeowners’ preferences of heating technologies in the UK TIMES model. Energy 2018:148:716–727. https://doi.org/10.1016/j.energy.2018.01.15010.1016/j.energy.2018.01.150
  14. [14] Bolwig S. et al. Review of modelling energy transitions pathways with application to energy system flexibility. Renewable and Sustainable Energy Reviews 2018:101:440–452. https://doi.org/10.1016/j.rser.2018.11.01910.1016/j.rser.2018.11.019
  15. [15] Reveiu A., Smeureanu I., Dardala M., Kanala R. Modelling domestic lighting energy consumption in Romania by integrating consumers behavior. Procedia Computer Science 2015:52(1):812–818. https://doi.org/10.1016/j.procs.2015.05.13710.1016/j.procs.2015.05.137
  16. [16] Cayla J. M., Maïzi N. Integrating household behavior and heterogeneity into the TIMES-Households model. Applied Energy 2015:139:56–67. https://doi.org/10.1016/j.apenergy.2014.11.01510.1016/j.apenergy.2014.11.015
  17. [17] Pfenninger S. Opening the black box of energy modelling: Strategies and lessons learned. Energy Strategy Reviews 2018:19:63–71. https://doi.org/10.1016/j.esr.2017.12.00210.1016/j.esr.2017.12.002
  18. [18] Loulou R., Goldstein G., Kanudia A., Lettila A., Remme U., Noble K. Documentation for the TIMES Model PART I - Concepts and Theory. Energy Technology Systems Analysis Programme, 2016.
  19. [19] Commission to the European Parliament and the Council, Climate action progress report. [Online]. [Accessed: 15.04.2020]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52015DC0576
  20. [20] Central Statistical Bureau of Latvia. Energy balance, TJ, thsd toe (NACE Rev.2). [Online]. [Accessed: 22.04.2020]. Available: http://data1.csb.gov.lv/pxweb/en/vide/vide__energetika__ikgad/ENG020.px/.
  21. [21] Cabinet of Ministers. Regulation on building classification in Latvia. Latvijas Vestnesis 118, no. 118, 2018.
  22. [22] The State Construction Control Bureau of Latvia. Average specific heating consumption. 2018. [Online]. [Accessed: 15.02.2020]. Available: http://bvkb.gov.lv/lv/content/videjais-ipatnejais-apkures-paterins-2.
  23. [23] Ministry of Economics. Long-Term Strategy for Renovation of Buildings. Riga, 2017.
  24. [24] Ministry of Economics. Valsts institūciju īpašumā, valdījumā un lietošanā esošās ēkas ar kopējo platību virs 250 m2. 2019. (In Latvian)
  25. [25] Cabinet of Ministers. Regulations Regarding Energy Certification of Buildings. Latvijas Vestnesis, 2013.
  26. [26] Fuentes E., Arce L., Salom J. A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis. Renewable and Sustainable Energy Reviews 2017:81:1530–1547. https://doi.org/10.1016/j.rser.2017.05.22910.1016/j.rser.2017.05.229
  27. [27] Roth K. W., Dieckmann J., Hamilton S. D., Goetzler W. Energy Consumption Characteristics of Commercial Building HVAC Systems Volume III : Energy Savings Potential. Building Technologies Program 2002:3(68370)
  28. [28] Werner S. European space cooling demands. Energy 2016:110:148–156. https://doi.org/10.1016/j.energy.2015.11.02810.1016/j.energy.2015.11.028
  29. [29] Pérez-Lombard L., Ortiz J., Pout C. A review on buildings energy consumption information. Energy and Buildings 2008:40(3):394–398. https://doi.org/10.1016/j.enbuild.2007.03.00710.1016/j.enbuild.2007.03.007
  30. [30] Cabinet of Ministers. Labour Protection Requirements in Workplaces. Latvijas Vestnesis, 2009.
  31. [31] Aman M. M., Jasmon G. B., Mokhlis H., Bakar A. H. A. Analysis of the performance of domestic lighting lamps. Energy Policy 2013:52:482–500. https://doi.org/10.1016/j.enpol.2012.09.06810.1016/j.enpol.2012.09.068
  32. [32] Kerimray A., Suleimenov B., De Miglio R., Rojas-Solórzano L., Amouei Torkmahalleh M., Gallachóir B. P. Ó. Investigating the energy transition to a coal free residential sector in Kazakhstan using a regionally disaggregated energy systems model. Journal of Cleaner Production 2018:196:1532–1548. https://doi.org/10.1016/j.jclepro.2018.06.15810.1016/j.jclepro.2018.06.158
DOI: https://doi.org/10.2478/rtuect-2020-0023 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 392 - 405
Published on: Jun 24, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2020 Dzintars Jaunzems, Ieva Pakere, Signe Allena-Ozoliņa, Ritvars Freimanis, Andra Blumberga, Gatis Bažbauers, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.