Have a personal or library account? Click to login
Sensitivity Analysis of Packed Bed Phase Change Material Thermal Storage for Domestic Solar Thermal System Cover

Sensitivity Analysis of Packed Bed Phase Change Material Thermal Storage for Domestic Solar Thermal System

Open Access
|Jun 2020

References

  1. [1] Eurostat. Energy consumption in households - Statistics Explained. 2018 [Online]. [Accessed 05.02.2019]. Available: https://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_consumption_in_households#cite_note-1
  2. [2] Eurostat. Energy, transport and environment statistics 2019 edition. Luxembourg: Publications Office of the European Union, 2019.
  3. [3] Eurostat. Supply, transformation and consumption of renewables and wastes [Online]. [Accessed 07.01.2020]. Available: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_cb_rw&lang=en
  4. [4] Pakere I., Blumberga D. Solar Energy in Low Temperature District Heating. Environmental and Climate Technologies 2019:23(3):147–158. https://doi.org/10.2478/rtuect-2019-008510.2478/rtuect-2019-0085
  5. [5] Weiss W., Biermayr P. Potential of Solar Thermal in Europe. Brussels: ESTIF, 2008.
  6. [6] Hansen K., Vad Mathiesen B. Comprehensive assessment of the role and potential for solar thermal in future energy systems. Solar Energy 2018:169:144–152. https://doi.org/10.1016/j.solener.2018.04.03910.1016/j.solener.2018.04.039
  7. [7] Zalba B., et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering 2003:23(3):251–283. https://doi.org/10.1016/S1359-4311(02)00192-810.1016/S1359-4311(02)00192-8
  8. [8] Salunkhe P. B., Shembekar P. S. A review on effect of phase change material encapsulation on the thermal performance of a system. Renewable and Sustainable Energy Reviews 2012:16(8):5603–5616. https://doi.org/10.1016/j.rser.2012.05.03710.1016/j.rser.2012.05.037
  9. [9] Reddy K. S., Mudgal V., Mallick T. K. Review of latent heat thermal energy storage for improved material stability and effective load management. Journal of Energy Storage 2018:15:205–227. https://doi.org/10.1016/j.est.2017.11.00510.1016/j.est.2017.11.005
  10. [10] Humphries W. R., Marshall G. C. Performance of finned thermal capacitators. Washington: NASA, 1974.
  11. [11] Farid M. M., Kanzawa A. Thermal performance of a heat storage module using pcm’s with different melting temperatures: Mathematical modeling. Journal of Solar Energy Engineering 1989:111(2):152–157. https://doi.org/10.1115/1.326830110.1115/1.3268301
  12. [12] Kousksou T., et al. PCM storage for solar DHW: From an unfulfilled promise to a real benefit. Solar Energy 2011:85(9):2033–2040. https://doi.org/10.1016/j.solener.2011.05.01210.1016/j.solener.2011.05.012
  13. [13] Talmatsky E., Kribus A. PCM storage for solar DHW: An unfulfilled promise? Solar Energy 2008:82(10):861–869. https://doi.org/10.1016/j.solener.2008.04.00310.1016/j.solener.2008.04.003
  14. [14] Bhagat K., Prabhakar M., Saha S. K. Estimation of thermal performance and design optimization of finned multitube latent heat thermal energy storage. Journal of Energy Storage 2018:19:135–144. https://doi.org/10.1016/j.est.2018.06.01410.1016/j.est.2018.06.014
  15. [15] Kenjo L., Inard C., Caccavelli D. Experimental and numerical study of thermal stratification in a mantle tank of a solar domestic hot water system. Applied Thermal Engineering 2007:27(11–12):1986–1995. https://doi.org/10.1016/j.applthermaleng.2006.12.00810.1016/j.applthermaleng.2006.12.008
  16. [16] Liu M., Saman W., Bruno F. Validation of a mathematical model for encapsulated phase change material flat slabs for cooling applications. Applied Thermal Engineering 2011:31(14–15):2340–2347. https://doi.org/10.1016/j.applthermaleng.2011.03.03410.1016/j.applthermaleng.2011.03.034
  17. [17] Bonk S. Methodology for the Assessment of the Hot Water Comfort of Factory Made Systems and Custom Built Systems. Stuttgart: University of Stuttgart (ITW), 2012.
  18. [18] Cabinet of Ministers. Noteikumi par Latvijas būvnormatīvu LBN 221-15. (Regulations for Latvian building norm LBN 221-15.) Ministry of Economics, 2015. (in Latvian)
  19. [19] Dzikevics M., Ansone A., Veidenbergs I. Experimental investigation of flow rate impact on thermal accumulation system with PCM. Energy Procedia 2017:128:386–392. https://doi.org/10.1016/j.egypro.2017.09.04310.1016/j.egypro.2017.09.043
  20. [20] Streicher W., et al. Simulation models of PCM storage units. A report of IEA Solar Heating and Cooling Programme. Task 32: Advanced Storage Concepts for Solar and Low Energy Buildings. Report C5. Graz: Graz University of Technology, 2008.
  21. [21] Schranzhofer H., et al. Validation of a TRNSYS simulation model for PCM energy storage and PCM wall construction elements. Graz: Graz University of Technology, 2006.
DOI: https://doi.org/10.2478/rtuect-2020-0022 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 378 - 391
Published on: Jun 24, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2020 Mikelis Dzikevics, Ivars Veidenbergs, Kęstutis Valančius, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.