[3] Eurostat. Supply, transformation and consumption of renewables and wastes [Online]. [Accessed 07.01.2020]. Available: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_cb_rw&lang=en
[11] Farid M. M., Kanzawa A. Thermal performance of a heat storage module using pcm’s with different melting temperatures: Mathematical modeling. Journal of Solar Energy Engineering 1989:111(2):152–157. https://doi.org/10.1115/1.326830110.1115/1.3268301
[14] Bhagat K., Prabhakar M., Saha S. K. Estimation of thermal performance and design optimization of finned multitube latent heat thermal energy storage. Journal of Energy Storage 2018:19:135–144. https://doi.org/10.1016/j.est.2018.06.01410.1016/j.est.2018.06.014
[17] Bonk S. Methodology for the Assessment of the Hot Water Comfort of Factory Made Systems and Custom Built Systems. Stuttgart: University of Stuttgart (ITW), 2012.
[18] Cabinet of Ministers. Noteikumi par Latvijas būvnormatīvu LBN 221-15. (Regulations for Latvian building norm LBN 221-15.) Ministry of Economics, 2015. (in Latvian)
[20] Streicher W., et al. Simulation models of PCM storage units. A report of IEA Solar Heating and Cooling Programme. Task 32: Advanced Storage Concepts for Solar and Low Energy Buildings. Report C5. Graz: Graz University of Technology, 2008.
[21] Schranzhofer H., et al. Validation of a TRNSYS simulation model for PCM energy storage and PCM wall construction elements. Graz: Graz University of Technology, 2006.