Have a personal or library account? Click to login

References

  1. [1] European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the regions. A policy framework for Climate and Energy in the period from 2020 to 2030, 2014. [Online]. [Accessed 15.05.2015]. Available: https://ec.europa.eu/clima/policies/strategies/2030_en.
  2. [2] European Commission. 2050 long-term strategy. Going climate-neutral by 2050, 2018. [Online]. [Accessed 15.05.2015]. https://ec.europa.eu/clima/policies/strategies/2050_en
  3. [3] Bereiter B., Eggleston S., Schmitt J., Nehrbass-Ahles C., Stocker T. F., Fischer H., Kipfstuhl S., Chappellaz J. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophysical Research Letters 2015:42(2):542–549. https://doi.org/10.1002/2014GL06195710.1002/2014GL061957
  4. [4] European Commission. Communication from the Commission to the European parliament, the European council, the council, the European economic and social committee, the committee of the regions and the European investment bank. A Clean Planet for all A European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy, 2018. [Online]. [Accessed 15.05.2015] https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52018DC0773.
  5. [5] Scarlat N., Dallemand J. F., Fahl F. Biogas: Developments and perspectives in Europe. Renewable Energy 2018:129 (A):457–472. https://doi.org/10.1016/j.renene.2018.03.00610.1016/j.renene.2018.03.006
  6. [6] Yu Q., Liu R., Li K., Ma R. A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China. Renewable and Sustainable Energy Reviews 2019:107:51–58. https://doi.org/10.1016/j.rser.2019.02.02010.1016/j.rser.2019.02.020
  7. [7] Timonen K., Sinkko T., Luostarinen S., Tampio E., Joensuu K. LCA of anaerobic digestion: Emission allocation for energy and digestate. Journal of Cleaner Production 2019:235:1567–1579. https://doi.org/10.1016/j.jclepro.2019.06.08510.1016/j.jclepro.2019.06.085
  8. [8] Chen X. Y., Vinh-Thang H., Ramirez A. A., Rodrigue D., Kaliaguine S.. Membrane gas separation technologies for biogas upgrading. RSC Advances 2015:5:31:24399–24448. https://doi.org/10.1039/C5RA00666J10.1039/C5RA00666J
  9. [9] Karklins A. Biogas production in Latvia. Possibilities of obaining and using biomethane [Online]. [Accessed 15.05.2015]. http://www.sam.gov.lv/images/modules/items/PDF/item_6133_6_LBA_biometans_SM_06.2016.pdf.
  10. [10] BiogasAction – New developments in Latvia. [Online]. [Accessed 15.05.2015]. https://www.fedarene.org/biogasaction-new-developments-latvia-23060.
  11. [11] Development of biogas in Latvia [Online]. [Accessed 15.05.2015]. http://latvijasbiogaze.lv/index.php?c=3.
  12. [12] Central Statistical Bureau of Latvia. Renewable energy consumption in 2017 [Online]. [Accessed 15.05.2015]. https://www.csb.gov.lv/lv/statistika/statistikas-temas/vide-energetika/energetika/meklet-tema/2407-atjaunigoenergoresursu-paterins-2017-gada.
  13. [13] Meyer A. K. P., Ehimen E. A., Holm-Nielsen J. B. Future European biogas: Animal manure, straw and grass potentials for a sustainable European biogas production. Biomass and Bioenergy 2018:111:154–164. https://doi.org/10.1016/j.biombioe.2017.05.01310.1016/j.biombioe.2017.05.013
  14. [14] Mano Esteves E. M., Naranjo Herrera A. M., Peçanha Esteves V. P., Morgado C. R. V. Life cycle assessment of manure biogas production: A review. Journal of Cleaner Production 219:411–423. https://doi.org/10.1016/j.jclepro.2019.02.09110.1016/j.jclepro.2019.02.091
  15. [15] Muizniece I., Zihare L., Pubule J., Blumberga D. Circular Economy and Bioeconomy Interaction Development as Future for Rural Regions. Case Study of Aizkraukle Region in Latvia. Environmental and Climate Technologies 2019:23(3):129–146. https://doi.org/10.2478/rtuect-2019-008410.2478/rtuect-2019-0084
  16. [16] Lauka D., Slisane D., Ievina L., Muizniece I., Blumberga D. When Bioeconomy Development Becomes a Biomass Energy Competitor. Environmental and Climate Technologies 2019:23(3):347–359. https://doi.org/10.2478/rtuect-2019-0100.10.2478/rtuect-2019-0100
  17. [17] Conti F., Saidi A., Goldbrunner M., CFD Modelling of Biomass Mixing in Anaerobic Digesters of Biogas Plants. Environmental and Climate Technologies 2019:23(3):57–69. https://doi.org/10.2478/rtuect-2019-007910.2478/rtuect-2019-0079
  18. [18] Blumberga, D., Veidenbergs, I., Romagnoli, F., Rochas, C., Žandeckis, A. Bioenergy Technologies, Riga: RTU, 2011.
  19. [19] European Environmental Agency. EMEP/EEA air pollutant emission inventory guidebook 2019. Biological treatment of waste – anaerobic digestion at biogas facilities [Online]. [Accessed 15.05.2015]. Available: file:///C:/Users/jelen/Downloads/5.B.2%20Biological%20treatment%20of%20waste%20-%20anaerobic%20Digestion%20Biogas%202019.pdf.
  20. [20] Li K., Liu R., Sun C. A review of methane production from agricultural residues in China. Renewable and Sustainable Energy Reviews 2016:54:857–865. https://doi.org/10.1016/j.rser.2015.10.10310.1016/j.rser.2015.10.103
  21. [21] Ministry of Environment and Regional development of Latvia. Land policy plan for 2016–2020. [Online]. [Accessed 15.05.2015]. (in Latvian) http://www.varam.gov.lv/in_site/tools/download.php?file=files/text/Sab_lidzdaliba/sab_apsp/VARAM_Zemes_politikas_plans_211116.pdf
  22. [22] Prochnow A., Heiermann M., Plöchl M., Linke B., Idler C., Amon T., Hobbs P. J. Bioenergy from permanent grassland – A review: 1. Biogas. Bioresource Technology 2009:100:21:4931–4944. https://doi.org/10.1016/j.biortech.2009.05.07010.1016/j.biortech.2009.05.07019546001
  23. [23] Chiumenti A., Borso F., Limina S. Dry anaerobic digestion of cow manure and agricultural products in a full-scale plant: Efficiency and comparison with wet fermentation. Waste Management 2018:71:704–710. https://doi.org/10.1016/j.wasman.2017.03.04610.1016/j.wasman.2017.03.04628389052
  24. [24] Latvian Renewable Energy federation. Biogas energy [Online]. [Accessed 15.05.2015]. Available: https://www.laef.lv/en/biogas//
  25. [25] Putri D., Saputro R., Budiyono B. Biogas Production from Cow Manure. International Journal of Renewable Energy Development 2012:1:2:61–64. https://doi.org/10.14710/ijred.1.2.61-6410.14710/ijred.1.2.61-64
  26. [26] Berglund Odhner P., Sárvári Horváth I., H. Mohseni Kabir M., Schabbauer A. Biogas from lignocellulosic biomass, 2012 [Online]. [Accessed 15.05.2015]. http://www.sgc.se/ckfinder/userfiles/files/SGC247.pdf.
  27. [27] Tong H., Tong Y. W., Peng Y. H. A comparative life cycle assessment on mono- and co-digestion of food waste and sewage sludge. Energy Procedia 2019:158:4166–4171. https://doi.org/10.1016/j.egypro.2019.01.81410.1016/j.egypro.2019.01.814
  28. [28] Climate Change Connection. CO2 equivalents [Online]. [Accessed 15.05.2015]. Available: https://climatechangeconnection.org/emissions/co2-equivalents/
  29. [29] Brēmere I., Indriksone D., Klāvs G., Reķis J. Synergies and Conflicting Impacts of GHG Reduction Measures Recommendation Report. 2016 [Online]. [Accessed 15.05.2015]. Available: https://www.bef.lv/wp-content/uploads/2018/03/Rekomendacijas_zinojums_BEF.pdf
  30. [30] Advertisements [Online]. [Accessed 15.05.2015]. Available: www.ss.comhttps://www.ss.com/
  31. [31] Tariffs for municipal waste [Online]. [Accessed 15.05.2015]. Available: http://www.getlini.lv/en/private-clients
DOI: https://doi.org/10.2478/rtuect-2020-0021 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 368 - 377
Published on: Jun 15, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2020 Ketija Bumbiere, Agita Gancone, Jelena Pubule, Vladimirs Kirsanovs, Saulius Vasarevicius, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.