Have a personal or library account? Click to login
Energy Efficiency – Indoor Air Quality Dilemma in Educational Buildings: A Possible Solution Cover

Energy Efficiency – Indoor Air Quality Dilemma in Educational Buildings: A Possible Solution

Open Access
|Jun 2020

References

  1. [1] Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency (Text with EEA relevance). Official Journal of the European Union 2018:L 156/75.
  2. [2] Energy Performance of Buildings Directive. Structural Survey 2005:23(1). https://doi.org/10.1108/ss.2005.11023aab.001">https://doi.org/10.1108/ss.2005.11023aab.00110.1108/ss.2005.11023aab.001
  3. [3] European Commission. A Roadmap for moving to a competitive low carbon economy in 2050. Brussels: European Commission, 2011.
  4. [4] European Commission. 2030 Climate & Energy framework - Climate Action. 2030 Climate & Energy Framework, 2018.
  5. [5] European Environment Agency. Share of EU energy consumption from renewable sources, 2005–2050. 2019.
  6. [6] European Commission Report. Report from the Commission to the European Parliament and the Council. The application of Council Regulation 2157/2001 of 8 October 2001 on the Statute for a European Company (SE). Brussels: European Commission, 2010.
  7. [7] Du X., Bokel R., van den Dobbelsteen A. Spatial configuration, building microclimate and thermal comfort: A modern house case. Energy and Buildings 2019:193:185–200. https://doi.org/10.1016/j.enbuild.2019.03.038">https://doi.org/10.1016/j.enbuild.2019.03.03810.1016/j.enbuild.2019.03.038
  8. [8] Gładyszewska-Fiedoruk K., Krawczyk D. A. The possibilities of energy consumption reduction and a maintenance of indoor air quality in doctor’s offices located in north-eastern Poland. Energy and Buildings 2014:85:235–245. https://doi.org/10.1016/j.enbuild.2014.08.041">https://doi.org/10.1016/j.enbuild.2014.08.04110.1016/j.enbuild.2014.08.041
  9. [9] Asere L., Mols T., Blumberga A. Assessment of Indoor Air Quality in Renovated Buildings of Liepāja Municipality. Energy Procedia 2016:91:907–915. https://doi.org/10.1016/j.egypro.2016.06.257">https://doi.org/10.1016/j.egypro.2016.06.25710.1016/j.egypro.2016.06.257
  10. [10] Csobod É., et al. SINPHONIE – Schools Indoor Pollution and Health Observatory Network in Europe - Final Report. Luxembourg: Publications Office of the European Union, 2014.
  11. [11] Gladyszewska-Fiedoruk K. Survey Research of Selected Issues the Sick Building Syndrome (SBS) in an Office Building. Environmental and Climate Technologies 2019:23(2):1–8. https://doi.org/10.2478/rtuect-2019-0050">https://doi.org/10.2478/rtuect-2019-005010.2478/rtuect-2019-0050
  12. [12] Becker R., Goldberger I., Paciuk M. Improving energy performance of school buildings while ensuring indoor air quality ventilation. Building and Environment 2007:42(9):3261–3276. https://doi.org/10.1016/j.buildenv.2006.08.016">https://doi.org/10.1016/j.buildenv.2006.08.01610.1016/j.buildenv.2006.08.016
  13. [13] Vasile V., et al. Indoor Air Quality - A Key Element of the Energy Performance of the Buildings. Energy Procedia 2016:96:277–284. https://doi.org/10.1016/j.egypro.2016.09.150">https://doi.org/10.1016/j.egypro.2016.09.15010.1016/j.egypro.2016.09.150
  14. [14] Földváry V., et al. Effect of energy renovation on indoor air quality in multifamily residential buildings in Slovakia. Building and Environment 2017:122:363–372. https://doi.org/10.1016/j.buildenv.2017.06.009">https://doi.org/10.1016/j.buildenv.2017.06.00910.1016/j.buildenv.2017.06.009
  15. [15] Ghita S. A., Catalina T. Energy efficiency versus indoor environmental quality in different Romanian countryside schools. Energy and Buildings 2015:92:140–154. https://doi.org/10.1016/j.enbuild.2015.01.049">https://doi.org/10.1016/j.enbuild.2015.01.04910.1016/j.enbuild.2015.01.049
  16. [16] Dascalaki E. G., Sermpetzoglou V. G. Energy performance and indoor environmental quality in Hellenic schools. Energy and Buildings 2011:43(2–3):718–727. https://doi.org/10.1016/j.enbuild.2010.11.017">https://doi.org/10.1016/j.enbuild.2010.11.01710.1016/j.enbuild.2010.11.017
  17. [17] Yang W., et al. Indoor air quality investigation according to age of the school buildings in Korea. Journal of Environmental Management 2009:90(1):348–354. https://doi.org/10.1016/j.jenvman.2007.10.003">https://doi.org/10.1016/j.jenvman.2007.10.00310.1016/j.jenvman.2007.10.00318079045
  18. [18] Baker L., Bernstein H. The Impact of School Buildings on Student Health and Performance. New York, NY: McGraw-Hill Research Foundation, 2012.
  19. [19] d´Ambrosio Alfano F. R., et al. Indoor Environment And Energy Efficiency In Schools - Part 1. Brussels, 2010.
  20. [20] Asere L., Blumberga A. Does energy efficiency-indoor air quality dilemma have an impact on the gross domestic product? Journal of Environmental Management 2019:262:110270. https://doi.org/10.1016/j.jenvman.2020.110270">https://doi.org/10.1016/j.jenvman.2020.11027010.1016/j.jenvman.2020.11027032094106
  21. [21] Wargocki P., Wyon D. P. Providing better thermal and air quality conditions in school classrooms would be cost-effective. Building and Environment 2013:59:581–589. https://doi.org/10.1016/j.buildenv.2012.10.007">https://doi.org/10.1016/j.buildenv.2012.10.00710.1016/j.buildenv.2012.10.007
  22. [22] Bakó-Biró Z., et al. Ventilation rates in schools and pupils’ performance. Building and Environment 2012:48(1):215–223. https://doi.org/10.1016/j.buildenv.2011.08.018">https://doi.org/10.1016/j.buildenv.2011.08.01810.1016/j.buildenv.2011.08.018
  23. [23] SolarGIS. Solar resource maps and GIS data. 2020. [Online]. [Accessed 07.02.2020]. Available: https://solargis.com/maps-and-gis-data/download/latvia
  24. [24] Arnulf J.-W. PV Status Report 2019. Luxembourg: Publications Office of the European Union, 2019.
  25. [25] Masson G., Kaizuka I. IEA PVPS report - Trends in Photovoltaic Applications 2019. Paris: IEA, 2019.
  26. [26] Eurostat. Electricity production capacities for renewables and wastes [Online]. [Accessed 27.05.2020]. Available: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_inf_epcrw&lang=en
  27. [27] AS Augstsprieguma tīkls. Elektroenergijas tirgus apskats, AST. [Accessed 27.05.2020]. Available: http://www.ast.lv/lv/electricity-market-review
  28. [28] Eurostat. Area of wooded land (source: FAO - FE) [Online]. [Accessed 27.05.2020]. Available: https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do
  29. [29] Gathier G., Jossart J.-M., Calderon C. AEBIOM Statistical Report. Pellet Market Overview. European Bioenergy Outlook. Brussels: European Biomass Associaton, 2017.
  30. [30] Eurostat. Eurostat celebrates Latvia - Product [Online]. [Accessed 27.05.2020]. Available: https://ec.europa.eu/eurostat/en/web/products-eurostat-news/-/EDN-20171118-1
  31. [31] Rickerson W., et al. IEA-RETD Residential Prosumers-Drivers and Policy Options (Re-Prosumers). Paris: IEA, 2014.
  32. [32] Flaute M., et al. Macroeconomic effects of prosumer households in Germany. International Journal of Energy Economics and Policy 2017:7(1):146–155.
  33. [33] Toffler A. Future Shock: The Third Wave. Bantam Book, 1981.
  34. [34] Oberst C. A., Schmitz H., Madlener R. Are Prosumer Households That Much Different? Evidence From Stated Residential Energy Consumption in Germany. Ecological Economics 2019:158:101–115. https://doi.org/10.1016/j.ecolecon.2018.12.014">https://doi.org/10.1016/j.ecolecon.2018.12.01410.1016/j.ecolecon.2018.12.014
  35. [35] Keiner D., et al. Cost optimal self-consumption of PV prosumers with stationary batteries, heat pumps, thermal energy storage and electric vehicles across the world up to 2050. Solar Energy 2109:185:406–423. https://doi.org/10.1016/j.solener.2019.04.081">https://doi.org/10.1016/j.solener.2019.04.08110.1016/j.solener.2019.04.081
  36. [36] Breyer C., Gerlach A. Global overview on grid-parity. Progress in Photovoltaics: Research and Applications 2013:21(1):121–136. https://doi.org/10.1002/pip.1254">https://doi.org/10.1002/pip.125410.1002/pip.1254
  37. [37] Photovoltaic Software. How to calculate output energy of PV solar systems? 2019 [Online]. [Accessed 27.05.2020]. Available: https://photovoltaic-software.com/principle-ressources/how-calculate-solar-energy-power-pv-systems
  38. [38] Wujek P., Sprawka P. New PV Micro-Modules on Standard Roof Tiles. Environmental and Climate Technologies 2019:23(2):338–346. https://doi.org/10.2478/rtuect-2019-0072">https://doi.org/10.2478/rtuect-2019-007210.2478/rtuect-2019-0072
  39. [39] 2020 Electricity Tariff Calculator Electroenergy Tariff Comparison [Online]. [Accessed 27.05.2020]. Available: https://www.elektroenergija.lv/en
  40. [40] AS Sadales tīkls. AS Sadales tīkls, elektroenerģijas sadales sistēmas pakalpojumu diferencētie tarifi no 2020.gada 1. janvāra (bez PVN) (JSC Sadales tīkls, differentiated tariffs for electricity distribution system services from January 1, 2020 (excluding VAT)) [Online]. [Accessed 27.05.2020]. Available: https://www.sadalestikls.lv/uploads/2020/01/ST_tarifi_2020-labots.pdf (in Latvian)
  41. [41] Elektrum. Mandatory procurement and capacity components : Electricity [Online]. [Accessed 27.05.2020]. Available: https://www.elektrum.lv/en/for-business/electricity/mandatory-procurement-and-capacity-components-1
  42. [42] AS Sadales tīkls. Microgenerator connection [Online]. [Accessed 27.05.2020]. Available: https://www.sadalestikls.lv/en/to-customers/connections/microgenerator-connection
  43. [43] AS Sadales tīkls. Power plant connection [Online]. [Accessed 27.05.2020]. Available: https://www.sadalestikls.lv/en/to-customers/connections/producer-connections
  44. [44] SPRK. Tarifi (Tariffs) [Online]. [Accessed 27.05.2020]. Available: https://www.sprk.gov.lv/content/tarifi-4 (in Latvian)
  45. [45] EEA. CO2 emission intensity – European Environment Agency. 2017.
DOI: https://doi.org/10.2478/rtuect-2020-0020 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 357 - 367
Published on: Jun 15, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2020 Liva Asere, Andra Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.