[12] Rana P., Bhargava R., Bég O. A. Numerical solution for mixed convection boundary layer flow of a nanofluid along an inclined plate embedded in a porous medium. Computers and Mathematics with Application 2012:64(9):2816–2832. https://doi.org/10.1016/j.camwa.2012.04.01410.1016/j.camwa.2012.04.014
[16] Eastman J. A., Choi S. U. S., Li S., Yu W., Thompson L. J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters 2001:78(6):718–720. https://doi.org/10.1063/1.134121810.1063/1.1341218
[18] Das S. K., Putra N., Thiesen P., Roetzel W. Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids. Journal of Heat Transfer 2003:125(4)567. https://doi.org/10.1115/1.157108010.1115/1.1571080
[19] Patel H. E., Das S. K., Sundararajan T., Sreekumaran Nair A., George B., Pradeep T. Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects. Applied Physics Letters 2003:83(14):2931–2933. https://doi.org/10.1063/1.1602578.10.1063/1.1602578
[21] Namburu P. K., Kulkarni D. P., Dandekar A., Das D. K. Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids. Micro & Nano Letters 2007:2(3):67–71. https://doi.org/10.1049/mnl:2007003710.1049/mnl:20070037
[24] Yuan W., Zhang Y., Cheng L., Wu H., Zheng L., Zhao D. The applications of carbon nanotubes and graphene in advanced rechargeable lithium batteries. Journal of Materials Chemistry A 2016:4(23):8932–8951. https://doi.org/10.1039/C6TA01546H10.1039/C6TA01546H
[28] Jamshed W., Aziz A. A comparative entropy based analysis of Cu and Fe3O4/methanol Powell-Eyring nanofluid in solar thermal collectors subjected to thermal radiation, variable thermal conductivity and impact of different nanoparticles shape. Results in Physics 2018:9:195–205. https://doi.org/10.1016/j.rinp.2018.01.06310.1016/j.rinp.2018.01.063
[30] Elsheikh A. H., Sharshir S. W., Mostafa M. E., Essa F. A., Ahmed Ali M. K. Applications of nanofluids in solar energy: A review of recent advances. Renewable and Sustainable Energy Reviews 2017:82:3483–3502. https://doi.org/10.1016/j.rser.2017.10.10810.1016/j.rser.2017.10.108
[36] Bazri S., Badruddin I. A., Naghavi M. S., Bahiraei M. A review of numerical studies on solar collectors integrated with latent heat storage systems employing fins or nanoparticles. Renewable Energy 2018:118:761–778. https://doi.org/10.1016/j.renene.2017.11.03010.1016/j.renene.2017.11.030
[41] Lomascolo M., Colangelo G., Milanese M., Risi A. De. Review of heat transfer in nanofluids: Conductive, convective and radiative experimental results. Renewable and Sustainable Energy Reviews 2015:43:1182–1198 https://doi.org/10.1016/j.rser.2014.11.08610.1016/j.rser.2014.11.086
[43] Xie H., Wang J., Xi T., Liu Y., Ai F., Wu Q. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. Journal of Applied Physics 2002:91(7):4568–4572. https://doi.org/10.1063/1.145418410.1063/1.1454184
[47] Bhogare R. A., Kothawale B. S. Performance investigation of Automobile Radiator operated with Nanofluids Based Coolant. IOSR Journal of Mechanical and Civil Engineering 2014:11(3):23–30. https://doi.org/10.9790/1684-11352330.10.9790/1684-11352330
[48] Mehtre D. N., Kore S. S. Experimental Analysis of Heat Transfer From Car Radiator Using Nanofluids. International Journal of Medicinal Chemistry and Analysis 2014:2(4):101–106.
[56] Lee S., Choi S. U.-S., Li S., Eastman J. A. Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles. Journal of Heat Transfer 1999:121(2):280. https://doi.org/10.1115/1.282597810.1115/1.2825978
[59] Jmai R., Ben-Beya B., Lili T. Heat transfer and fluid flow of nanofluid-filled enclosure with two partially heated side walls and different nanoparticles. Superlattices and Microstructures 2013:53(1):130–154. https://doi.org/10.1016/j.spmi.2012.10.00310.1016/j.spmi.2012.10.003
[63] Chandrasekar M., Suresh S., Chandra Bose A. Experimental studies on heat transfer and friction factor characteristics of Al2O3/water nanofluid in a circular pipe under laminar flow with wire coil inserts. Experimental Thermal and Fluid Science 2009:34(2):122–130. https://doi.org/10.1016/j.expthermflusci.2009.10.00110.1016/j.expthermflusci.2009.10.001
[64] Suresh S., Venkitaraj K. P., Selvakumar P. Comparative study on thermal performance of helical screw tape inserts in laminar flow using Al2O3/water and CuO/water nanofluids. Superlattices and Microstructures 2011:49(6):608–622. https://doi.org/10.1016/j.spmi.2011.03.01210.1016/j.spmi.2011.03.012
[65] Zamzamian A., Oskouie S. N., Doosthoseini A., Joneidi A., Pazouki M. Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow. Experimental Thermal and Fluid Science 2011:35(3):495–502. https://doi.org/10.1016/j.expthermflusci.2010.11.01310.1016/j.expthermflusci.2010.11.013
[75] Kalbande V. P., Walke P. V. Oil-and Aluminum-Based Thermal Storage System Using Flat Plate Solar Collector. In Kolhe M., Labhasetwar P., Suryawanshi H. (eds) Smart Technologies for Energy, Environment and Sustainable Development. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, 2019:553–562. https://doi.org/10.1007/978-981-13-6148-7_5310.1007/978-981-13-6148-7_53
[77] Gan Y., Qiao L. Optical properties and radiation-enhanced evaporation of nanofluid fuels containing carbon-based nanostructures. Energy and Fuels 2012:26(7):4224–4230. https://doi.org/10.1021/ef300493m10.1021/ef300493m
[81] Rucevskis S., Akishin P., Korjakins A. Performance Evaluation of an Active PCM Thermal Energy Storage System for Space Cooling in Residential Buildings. Environmental and Climate Technologies 2019:23(2):74–89. https://doi.org/10.2478/rtuect-2019-005610.2478/rtuect-2019-0056
[82] Sirmelis R., Vanaga R., Freimanis R., Blumberga A. Solar Facade Module for Nearly Zero Energy Building. Optimization Strategies Environmental and Climate Technologies 2019:23(3):170–181. https://doi.org/10.2478/rtuect-2019-008710.2478/rtuect-2019-0087
[84] Ebrahimnia-Bajestan E., Charjouei Moghadam M., Niazmand H., Daungthongsuk W., Wongwises S. Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers. International Journal of Heat and Mass Transfer. 2016:92:1041–1052. https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.10710.1016/j.ijheatmasstransfer.2015.08.107
[85] Wang W., Wu Z., Li B., Sundén B. A review on molten-salt-based and ionic-liquid-based nanofluids for medium-to-high temperature heat transfer. Journal of Thermal Analysis and Calorimetry 2019:136(3):1037–1051. https://doi.org/10.1007/s10973-018-7765-y10.1007/s10973-018-7765-y
[87] Kalbande V. P., Walke P. V., Shelke R. Aluminum-based thermal storage system with solar collector using nanofluid. Energy Storage 2019:1(6):1–7. https://doi.org/10.1002/est2.99.10.1002/est2.99
[89] Notton G., Motte F., Cristofari C., Canaletti J. L. Performances and numerical optimization of a novel thermal solar collector for residential building. Renewable and Sustainable Energy Reviews 2014:33:60–73. https://doi.org/10.1016/j.rser.2014.01.06110.1016/j.rser.2014.01.061
[90] Albatayneh A., Alterman D., Page A., Moghtaderi B. The significance of temperature based approach over the energy based approaches in the buildings thermal assessment. Environmental and Climate Technologies 2017:19(1):39–50. https://doi.org/10.1515/rtuect-2017-000410.1515/rtuect-2017-0004
[94] Kabeel A. E., El-Said E. M. S. Applicability of flashing desalination technique for small scale needs using a novel integrated system coupled with nanofluid-based solar collector. Desalination 2014:333(1):10–22. https://doi.org/10.1016/j.desal.2013.11.021.10.1016/j.desal.2013.11.021
[100] Prakasam M. J. S., Thottipalayam Vellingiri A. T., Nataraj S. An experimental study of the mass flow rates effect on flat-plate solar water heater performance using Al2O3/water nanofluid. Thermal Science 2017:21:379–388. https://doi.org/10.2298/TSCI17S2379P.10.2298/TSCI17S2379P
[101] Dasaien A. V., Elumalai N. Performance Enhancement Studies in a Thermosyphon Flat Plate Solar Water Heater with CuO Nanofluid. Thermal science 2017:21:6B:2757–2768.10.2298/TSCI151005012D
[102] Colangelo G., Milanese M., and De Risi A. Numerical simulation of thermal efficiency of an innovative Al2O3nanofluid solar thermal collector influence of nanoparticles concentration. Thermal Science 2017:21(6B):2769–2779. https://doi.org/10.2298/TSCI151207168C10.2298/TSCI151207168C
[105] Hatami M., Khazayinejad M., Zhou J., Jing D. Three-dimensional and two-phase nanofluid flow and heat transfer analysis over a stretching infinite solar plate. Thermal Science 2018:22(2):871–884. https://doi.org/10.2298/TSCI160614266H10.2298/TSCI160614266H
[106] Karami M., Akhavan Bahabadi M. A., Delfani S., Ghozatloo A. A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector. Solar Energy Materials and Solar Cells 2014:121:114–118. https://doi.org/10.1016/j.solmat.2013.11.00410.1016/j.solmat.2013.11.004
[107] Gupta H. K., Das Agrawal G., Mathur J. Investigations for effect of Al2O3-H2O nanofluid flow rate on the efficiency of direct absorption solar collector. Case Studies in Thermal Engineering 2015:5:70–78. https://doi.org/10.1016/j.csite.2015.01.00210.1016/j.csite.2015.01.002
[108] Liu J., Ye Z., Zhang L., Fang X., Zhang Z. A combined numerical and experimental study on graphene/ionic liquid nanofluid based direct absorption solar collector. Solar Energy Materials and Solar Cells 2015:136:177–186. https://doi.org/10.1016/j.solmat.2015.01.01310.1016/j.solmat.2015.01.013
[111] Zhang L., Liu J., He G., Ye Z., Fang X., Zhang Z. Radiative properties of ionic liquid-based nanofluids for medium-to-high-temperature direct absorption solar collectors. Solar Energy Materials and Solar Cells 2014:130:521–528. https://doi.org/10.1016/j.solmat.2014.07.04010.1016/j.solmat.2014.07.040
[115] Khullar V., Tyagi H., Phelan P. E., Otanicar T. P., Singh H., Taylor R. A. Solar energy harvesting using nanofluids-based concentrating solar collector. Journal of Nanotechnology in Engineering and Medicine 2012:3(3):31003. https://doi.org/10.1115/1.400738710.1115/1.4007387
[118] Selvakumar P., Somasundaram P., Thangavel P. Performance study on evacuated tube solar collector using therminol D-12 as heat transfer fluid coupled with parabolic trough. Energy Conversion and Management 2014:85:505–510. https://doi.org/10.1016/j.enconman.2014.05.06910.1016/j.enconman.2014.05.069
[119] Yousefi T., Shojaeizadeh E., Veysi F., Zinadini S. An experimental investigation on the effect of pH variation of MWCNT-H 2O nanofluid on the efficiency of a flat-plate solar collector. Solar Energy 2012:86(2):771–779. https://doi.org/10.1016/j.solener.2011.12.003.10.1016/j.solener.2011.12.003
[122] Nasrin R., Alim M. A., Chamkha A. J. Effects of physical parameters on natural convection in a solar collector filled with nanofluid. Heat Transfer—Asian Research 2013:42(1):73–88. https://doi.org/10.1002/htj.2102610.1002/htj.21026
[123] Tiwari A. K., Ghosh P., Sarkar J. Solar water heating using nanofluids – a comprehensive overview and environmental impact analysis. International Journal of Emerging Technology and Advanced Engineering 2013:3(9001):221–224.
[124] Kasaeian M. S. A. B., Sokhansefat T., Abbaspour M. J. Numerical Study of Heat Transfer Enhancement by using Al2O3/Synthetic Oil Nanofluid in a Parabolic Trough Collector Tube. World Academy of Science, Engineering and Technology 2014:69:1154–1159.
[125] Tyagi H., Phelan P., Prasher R. Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector. Journal of Solar Energy Engineering 2009:131(4):041004. https://doi.org/10.1115/1.319756210.1115/1.3197562
[129] Cui Y., Zhu Q. Study of photovoltaic/thermal systems with MgO-water nanofluids flowing over silicon solar cells. Asia-Pacific Power and Energy Engineering Conference, 2012.10.1109/APPEEC.2012.6307203
[131] Chougule S. S., Pise A. T., Madane P. A. Performance of nanofluid-charged solar water heater by solar tracking system. IEEE-international conference on advances in engineering, science and management ICAESM 2012, 2012.
[132] Otanicar T. P., Phelan P. E., Prasher R. S., Rosengarten G., Taylor R. A. Nanofluid-based direct absorption solar collector. Journal of Renewable and Sustainable Energy 2010:2(3):033102. https://doi.org/10.1063/1.342973710.1063/1.3429737