Have a personal or library account? Click to login
Heat Storage Combined with Biomass CHP under the National Support Policy. A Case Study of Estonia Cover

Heat Storage Combined with Biomass CHP under the National Support Policy. A Case Study of Estonia

Open Access
|Mar 2020

References

  1. [1] Galindo Fernandez M., Roger-Lacan C., Gahrs U., Aumaitre V. Efficient district heating and cooling systems in the EU Case studies analysis, replicable key success factors and potential policy implications. Publication Office of the European Union, 2016. https://doi.org/10.2760/371045
  2. [2] Mashatin V., Link S., Siirde A. The Impact of Alternative Heat Supply Options on CO2 Emission and District Heating System. Chemical Engineering Transactions 2014:39:1105–1110. https://doi.org/10.3303/CET1439185
  3. [3] Connolly D., Mathiesen B. V., Ostergaard P. A., Lund H., Werner S., Moller B., Persson U., Boermans T., Trier D., Nielsen S. Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system. Energy Policy 2014:65:475–489. https://doi.org/10.1016/j.enpol.2013.10.03510.1016/j.enpol.2013.10.035
  4. [4] Latosov E., Volkova A., Siirde A., Thalfeldt M., Kurnitski J. The Impact of Parallel Energy Consumption on the District Heating Networks. Environmental and Climate Technologies 2019:23(1):1–13. https://doi.org/10.2478/rtuect-2019-000110.2478/rtuect-2019-0001
  5. [5] Vigants E., Prodanuks T., Vigants G., Veidenbergs I. Modelling of Technological Solutions to 4th Generation DH Systems. Environmental and Climate Technologies 2017:20:5–23. https://doi.org/10.1515/rtuect-2017-000710.1515/rtuect-2017-0007
  6. [6] Latosov E., Volkova A., Siirde A., Kurnitski J., Thalfeldt M. Primary energy factor for district heating networks in European Union member states. Energy Procedia 2017:116:69–77. https://doi.org/10.1016/j.egypro.2017.05.05610.1016/j.egypro.2017.05.056
  7. [7] Pakere I., Romagnoli F., Blumberga D. Introduction of small-scale 4th generation district heating system. Methodology approach. Energy Procedia 2018:149:549–554. https://doi.org/10.1016/j.egypro.2018.08.21910.1016/j.egypro.2018.08.219
  8. [8] Lund H., Werner S., Wiltshire S., Svendsen S., Thorsen J. E., Hvelplund F., Mathiesen B. V. 4th Generation District Heating (4GDH). Integrating smart thermal grids into future sustainable energy systems. Energy 2014:68:1–11. https://doi.org/10.1016/j.energy.2014.02.08910.1016/j.energy.2014.02.089
  9. [9] Ziemele J., Gravelsins A., Blumberga A., Vigants G., Blumberga D. System dynamics model analysis of pathway to 4th generation district heating in Latvia. Energy 2016:110:85–94. https://doi.org/10.1016/j.energy.2015.11.07310.1016/j.energy.2015.11.073
  10. [10] Lund H., Ostergaard P. A., Connolly D., Mathiesen B. V. Smart energy and smart energy systems. Energy 2017:137:556–565. https://doi.org/10.1016/j.energy.2017.05.12310.1016/j.energy.2017.05.123
  11. [11] Nuytten T., Claessens B., Paredis K., Van Bael J., Six D. Flexibility of a combined heat and power system with thermal energy storage for district heating. Applied Energy 2013:104:583–591. https://doi.org/10.1016/j.apenergy.2012.11.02910.1016/j.apenergy.2012.11.029
  12. [12] Meffre A., Xavier P., Olives R., Bessada C., Veron E., Echegut P. High-Temperature Sensible Heat-Based Thermal Energy Storage Materials Made of Vitrified MSWI Fly Ashes. Waste and Biomass Valorization 2015:6(6):1003–1014. https://doi.org/10.1007/s12649-015-9409-910.1007/s12649-015-9409-9
  13. [13] Karner K., Mckenna R., Klobasa M., Kienberger T. Industrial excess heat recovery in industry-city networks: a technical, environmental and economic assessment of heat flexibility. Journal of Cleaner Production 2018:193:771–783. https://doi.org/10.1016/j.jclepro.2018.05.04510.1016/j.jclepro.2018.05.045
  14. [14] Bauer D., Marx R., Nußbicker-Lux J., Ochs F., Heidemann W., Muller-Steinhagen H. German central solar heating plants with seasonal heat storage. Solar Energy 2010:84(4):612–623. https://doi.org/10.1016/j.solener.2009.05.01310.1016/j.solener.2009.05.013
  15. [15] Ciampi G., Rosato A., Sibilio S. Thermo-economic sensitivity analysis by dynamic simulations of a small Italian solar district heating system with a seasonal borehole thermal energy storage. Energy 2018:143:757–771. https://doi.org/10.1016/j.energy.2017.11.02910.1016/j.energy.2017.11.029
  16. [16] Soloha R., Pakere I., Blumberga D. Solar energy use in district heating systems. A case study in Latvia. Energy 2017:137:586–594. https://doi.org/10.1016/j.energy.2017.04.15110.1016/j.energy.2017.04.151
  17. [17] Verda V., Colella F. Primary energy savings through thermal storage in district heating networks. Energy 2011:36(7):4278–4286. https://doi.org/10.1016/j.energy.2011.04.01510.1016/j.energy.2011.04.015
  18. [18] Noussan M., Cerino-Abdin G., Poggio A., Roberto R. Biomass-fired CHP and heat storage system simulations in existing district heating systems. Applied Thermal Engineering 2014:71(2):729–735. https://doi.org/10.1016/j.applthermaleng.2013.11.02110.1016/j.applthermaleng.2013.11.021
  19. [19] Wang H., Yin W., Abdollahi E., Lahdelma R., Jiao W. Modelling and optimization of CHP based district heating system with renewable energy production and energy storage. Applied Energy 2015:159:401–421. https://doi.org/10.1016/j.apenergy.2015.09.02010.1016/j.apenergy.2015.09.020
  20. [20] Streckiene G., Miseviciute V. Research of Operation Modes of Heat Storage Tank in CHP Plant Using Numerical Simulation. Environmental and Climate Technologies 2012:6:91–99. https://doi.org/10.2478/v10145-011-0013-310.2478/v10145-011-0013-3
  21. [21] Cabeza L. F., Martorell I., Miro L., Fernandez A. I., Barreneche C. Introduction to thermal energy storage (TES) systems. Advances in Thermal Energy Storage Systems 2015:1–28. https://doi.org/10.1533/9781782420965.110.1533/9781782420965.1
  22. [22] Gadd H., Werner S. Thermal energy storage systems for district heating and cooling. Advances in Thermal Energy Storage Systems 2015:467–478. https://doi.org/10.1533/9781782420965.4.46710.1533/9781782420965.4.467
  23. [23] Nordvarme. Korttidslagring av varmt vand i tanke over jorden (Short-term storage of hot water in tanks above ground), 1993. (in Swedish)
  24. [24] Smith A. D., Mago P. J., Fumo N. Benefits of thermal energy storage option combined with CHP system for different commercial building types. Sustainable Energy Technologies and Assessments 2013:1:3–12. https://doi.org/10.1016/j.seta.2012.11.00110.1016/j.seta.2012.11.001
  25. [25] Andrews D., Pardo-Garcia N., Krook-Riekkola A., Tzimas E., Serpa J., Carlsson J., Papaioannou I. Background Report on EU-27 District Heating and Cooling Potentials, Barriers, Best Practice and Measures of Promotion. JRC Scientific and Policy Report 2012. https://setis.ec.europa.eu/system/files/1.DHCpotentials.pdf
  26. [26] Volkova A., Hlebnikov A., Siirde A. Simulation of the accumulator tank coupled with the power unit of power plant under the conditions of open electricity market. Chemical Engineering Transactions 2012:29:757–762. https://doi.org/10.3303/CET1229127
  27. [27] Pakere I., Purina D., Blumberga D., Bolonina A. Evaluation of Thermal Energy Storage Capacity by Heat Load Analyses. Energy Procedia 2016:95:377–384. https://doi.org/10.1016/j.egypro.2016.09.04010.1016/j.egypro.2016.09.040
  28. [28] Hast A., Rinne S., Syri S., Kiviluoma J. The role of heat storages in facilitating the adaptation of district heating systems to large amount of variable renewable electricity. Energy 2017:137:775–788. https://doi.org/10.1016/j.energy.2017.05.11310.1016/j.energy.2017.05.113
  29. [29] Penttila K. E. Waste-to-Energy Plant as Part of Combined Heat and Power Strategy – Using the Example of the Klaipeda Case. Importance of circular economy is growing. TK Verlag Karl Thome-Kozmiensky, 2012.
  30. [30] CODE2. Case study factsheet Parnu, Estonia, Parnu CHP plant, 2014 [Online]. Available: http://www.code2-project.eu/wp-content/uploads/CODE2-BPC-ES-Parnu-CHP-v1.pdf
  31. [31] Government of the Republic of Estonia. National Development Plan of the Energy Sector until 2030, 2017 [Online]. Available: https://www.mkm.ee/sites/default/files/ndpes_2030_eng.pdf
  32. [32] Council of European Energy Regulators, Status Review of Renewable Support Schemes in Europe, 2017 [Online]. Available: https://www.ceer.eu/documents/104400/-/-/41df1bfe-d740-1835-9630-4e4cccaf8173
  33. [33] Ziemele J., Pakere I., Chernovska L., Blumberga D. Lowering Temperature Regime in District Heating Network for Existing Building Stock. Chemical Engineering Transactions 2016:52:709–714. doi:10.3303/CET1652119
  34. [34] Danish Energy Agency. Individual Heating Plants and Energy Transport Technology Data for Energy Plants, 2012.
  35. [35] Loo L., Maaten B., Konist A., Siirde A., Neshumayev D., Pihu T. Carbon dioxide emission factors for oxy-fuel CFBC and aqueous carbonation of the Ca-rich oil shale ash. Energy Procedia 2017:128:144–149. https://doi.org/10.1016/j.egypro.2017.09.03410.1016/j.egypro.2017.09.034
  36. [36] Konist A., Maaten B., Loo L., Neshumayev D., Pihu T. Mineral Sequestration of CO2 by Carboation of Ca-Rich Oil Shale Ash in Natural Conditions. Oil Shale 2016:33(3):248–259. https://doi.org/10.3176/oil.2016.3.0410.3176/oil.2016.3.04
  37. [37] Latosov E., Kurnitski J., Thalfeldt M., Volkova A. Primary Energy Factors for Different District Heating Networks: An Estonian Example. Energy Procedia 2016:96:674–684. https://doi.org/10.1016/j.egypro.2016.09.12610.1016/j.egypro.2016.09.126
  38. [38] Government of Republic of Estonia. Minimum requirements for energy performance RT I, 2015.
DOI: https://doi.org/10.2478/rtuect-2020-0011 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 171 - 184
Published on: Mar 13, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Anna Volkova, Eduard Latosov, Andres Siirde, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.