[1] Galindo Fernandez M., Roger-Lacan C., Gahrs U., Aumaitre V. Efficient district heating and cooling systems in the EU Case studies analysis, replicable key success factors and potential policy implications. Publication Office of the European Union, 2016. https://doi.org/10.2760/371045
[2] Mashatin V., Link S., Siirde A. The Impact of Alternative Heat Supply Options on CO2 Emission and District Heating System. Chemical Engineering Transactions 2014:39:1105–1110. https://doi.org/10.3303/CET1439185
[3] Connolly D., Mathiesen B. V., Ostergaard P. A., Lund H., Werner S., Moller B., Persson U., Boermans T., Trier D., Nielsen S. Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system. Energy Policy 2014:65:475–489. https://doi.org/10.1016/j.enpol.2013.10.03510.1016/j.enpol.2013.10.035
[4] Latosov E., Volkova A., Siirde A., Thalfeldt M., Kurnitski J. The Impact of Parallel Energy Consumption on the District Heating Networks. Environmental and Climate Technologies 2019:23(1):1–13. https://doi.org/10.2478/rtuect-2019-000110.2478/rtuect-2019-0001
[8] Lund H., Werner S., Wiltshire S., Svendsen S., Thorsen J. E., Hvelplund F., Mathiesen B. V. 4th Generation District Heating (4GDH). Integrating smart thermal grids into future sustainable energy systems. Energy 2014:68:1–11. https://doi.org/10.1016/j.energy.2014.02.08910.1016/j.energy.2014.02.089
[12] Meffre A., Xavier P., Olives R., Bessada C., Veron E., Echegut P. High-Temperature Sensible Heat-Based Thermal Energy Storage Materials Made of Vitrified MSWI Fly Ashes. Waste and Biomass Valorization 2015:6(6):1003–1014. https://doi.org/10.1007/s12649-015-9409-910.1007/s12649-015-9409-9
[13] Karner K., Mckenna R., Klobasa M., Kienberger T. Industrial excess heat recovery in industry-city networks: a technical, environmental and economic assessment of heat flexibility. Journal of Cleaner Production 2018:193:771–783. https://doi.org/10.1016/j.jclepro.2018.05.04510.1016/j.jclepro.2018.05.045
[15] Ciampi G., Rosato A., Sibilio S. Thermo-economic sensitivity analysis by dynamic simulations of a small Italian solar district heating system with a seasonal borehole thermal energy storage. Energy 2018:143:757–771. https://doi.org/10.1016/j.energy.2017.11.02910.1016/j.energy.2017.11.029
[24] Smith A. D., Mago P. J., Fumo N. Benefits of thermal energy storage option combined with CHP system for different commercial building types. Sustainable Energy Technologies and Assessments 2013:1:3–12. https://doi.org/10.1016/j.seta.2012.11.00110.1016/j.seta.2012.11.001
[25] Andrews D., Pardo-Garcia N., Krook-Riekkola A., Tzimas E., Serpa J., Carlsson J., Papaioannou I. Background Report on EU-27 District Heating and Cooling Potentials, Barriers, Best Practice and Measures of Promotion. JRC Scientific and Policy Report 2012. https://setis.ec.europa.eu/system/files/1.DHCpotentials.pdf
[26] Volkova A., Hlebnikov A., Siirde A. Simulation of the accumulator tank coupled with the power unit of power plant under the conditions of open electricity market. Chemical Engineering Transactions 2012:29:757–762. https://doi.org/10.3303/CET1229127
[29] Penttila K. E. Waste-to-Energy Plant as Part of Combined Heat and Power Strategy – Using the Example of the Klaipeda Case. Importance of circular economy is growing. TK Verlag Karl Thome-Kozmiensky, 2012.
[33] Ziemele J., Pakere I., Chernovska L., Blumberga D. Lowering Temperature Regime in District Heating Network for Existing Building Stock. Chemical Engineering Transactions 2016:52:709–714. doi:10.3303/CET1652119
[36] Konist A., Maaten B., Loo L., Neshumayev D., Pihu T. Mineral Sequestration of CO2 by Carboation of Ca-Rich Oil Shale Ash in Natural Conditions. Oil Shale 2016:33(3):248–259. https://doi.org/10.3176/oil.2016.3.0410.3176/oil.2016.3.04