Have a personal or library account? Click to login
Heat Storage Combined with Biomass CHP under the National Support Policy. A Case Study of Estonia Cover

Heat Storage Combined with Biomass CHP under the National Support Policy. A Case Study of Estonia

Open Access
|Mar 2020

References

  1. [1] Galindo Fernandez M., Roger-Lacan C., Gahrs U., Aumaitre V. Efficient district heating and cooling systems in the EU Case studies analysis, replicable key success factors and potential policy implications. Publication Office of the European Union, 2016. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2760/371045" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2760/371045</a>">https://doi.org/10.2760/371045</ext-link>
  2. [2] Mashatin V., Link S., Siirde A. The Impact of Alternative Heat Supply Options on CO<sub>2</sub> Emission and District Heating System. <em>Chemical Engineering Transactions</em> 2014:39:1105–1110. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3303/CET1439185" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3303/CET1439185</a>">https://doi.org/10.3303/CET1439185</ext-link>
  3. [3] Connolly D., Mathiesen B. V., Ostergaard P. A., Lund H., Werner S., Moller B., Persson U., Boermans T., Trier D., Nielsen S. Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system. <em>Energy Policy</em> 2014:65:475–489. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.enpol.2013.10.035" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enpol.2013.10.035</a>">https://doi.org/10.1016/j.enpol.2013.10.035</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.enpol.2013.10.035" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.enpol.2013.10.035</a></dgdoi:pub-id>
  4. [4] Latosov E., Volkova A., Siirde A., Thalfeldt M., Kurnitski J. The Impact of Parallel Energy Consumption on the District Heating Networks. <em>Environmental and Climate Technologies</em> 2019:23(1):1–13. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2019-0001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2019-0001</a>">https://doi.org/10.2478/rtuect-2019-0001</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/rtuect-2019-0001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/rtuect-2019-0001</a></dgdoi:pub-id>
  5. [5] Vigants E., Prodanuks T., Vigants G., Veidenbergs I. Modelling of Technological Solutions to 4<sup>th</sup> Generation DH Systems. <em>Environmental and Climate Technologies</em> 2017:20:5–23. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1515/rtuect-2017-0007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1515/rtuect-2017-0007</a>">https://doi.org/10.1515/rtuect-2017-0007</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1515/rtuect-2017-0007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/rtuect-2017-0007</a></dgdoi:pub-id>
  6. [6] Latosov E., Volkova A., Siirde A., Kurnitski J., Thalfeldt M. Primary energy factor for district heating networks in European Union member states. <em>Energy Procedia</em> 2017:116:69–77. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.egypro.2017.05.056" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.egypro.2017.05.056</a>">https://doi.org/10.1016/j.egypro.2017.05.056</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.egypro.2017.05.056" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.egypro.2017.05.056</a></dgdoi:pub-id>
  7. [7] Pakere I., Romagnoli F., Blumberga D. Introduction of small-scale 4<sup>th</sup> generation district heating system. Methodology approach. <em>Energy Procedia</em> 2018:149:549–554. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.egypro.2018.08.219" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.egypro.2018.08.219</a>">https://doi.org/10.1016/j.egypro.2018.08.219</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.egypro.2018.08.219" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.egypro.2018.08.219</a></dgdoi:pub-id>
  8. [8] Lund H., Werner S., Wiltshire S., Svendsen S., Thorsen J. E., Hvelplund F., Mathiesen B. V. 4<sup>th</sup> Generation District Heating (4GDH). Integrating smart thermal grids into future sustainable energy systems. <em>Energy</em> 2014:68:1–11. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2014.02.089" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2014.02.089</a>">https://doi.org/10.1016/j.energy.2014.02.089</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.energy.2014.02.089" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.energy.2014.02.089</a></dgdoi:pub-id>
  9. [9] Ziemele J., Gravelsins A., Blumberga A., Vigants G., Blumberga D. System dynamics model analysis of pathway to 4th generation district heating in Latvia. <em>Energy</em> 2016:110:85–94. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2015.11.073" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2015.11.073</a>">https://doi.org/10.1016/j.energy.2015.11.073</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.energy.2015.11.073" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.energy.2015.11.073</a></dgdoi:pub-id>
  10. [10] Lund H., Ostergaard P. A., Connolly D., Mathiesen B. V. Smart energy and smart energy systems. <em>Energy</em> 2017:137:556–565. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2017.05.123" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2017.05.123</a>">https://doi.org/10.1016/j.energy.2017.05.123</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.energy.2017.05.123" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.energy.2017.05.123</a></dgdoi:pub-id>
  11. [11] Nuytten T., Claessens B., Paredis K., Van Bael J., Six D. Flexibility of a combined heat and power system with thermal energy storage for district heating. <em>Applied Energy</em> 2013:104:583–591. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.apenergy.2012.11.029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.apenergy.2012.11.029</a>">https://doi.org/10.1016/j.apenergy.2012.11.029</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.apenergy.2012.11.029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.apenergy.2012.11.029</a></dgdoi:pub-id>
  12. [12] Meffre A., Xavier P., Olives R., Bessada C., Veron E., Echegut P. High-Temperature Sensible Heat-Based Thermal Energy Storage Materials Made of Vitrified MSWI Fly Ashes. <em>Waste and Biomass Valorization</em> 2015:6(6):1003–1014. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s12649-015-9409-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s12649-015-9409-9</a>">https://doi.org/10.1007/s12649-015-9409-9</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s12649-015-9409-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s12649-015-9409-9</a></dgdoi:pub-id>
  13. [13] Karner K., Mckenna R., Klobasa M., Kienberger T. Industrial excess heat recovery in industry-city networks: a technical, environmental and economic assessment of heat flexibility. <em>Journal of Cleaner Production</em> 2018:193:771–783. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jclepro.2018.05.045" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jclepro.2018.05.045</a>">https://doi.org/10.1016/j.jclepro.2018.05.045</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.jclepro.2018.05.045" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jclepro.2018.05.045</a></dgdoi:pub-id>
  14. [14] Bauer D., Marx R., Nußbicker-Lux J., Ochs F., Heidemann W., Muller-Steinhagen H. German central solar heating plants with seasonal heat storage. <em>Solar Energy</em> 2010:84(4):612–623. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.solener.2009.05.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.solener.2009.05.013</a>">https://doi.org/10.1016/j.solener.2009.05.013</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.solener.2009.05.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.solener.2009.05.013</a></dgdoi:pub-id>
  15. [15] Ciampi G., Rosato A., Sibilio S. Thermo-economic sensitivity analysis by dynamic simulations of a small Italian solar district heating system with a seasonal borehole thermal energy storage. <em>Energy</em> 2018:143:757–771. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2017.11.029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2017.11.029</a>">https://doi.org/10.1016/j.energy.2017.11.029</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.energy.2017.11.029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.energy.2017.11.029</a></dgdoi:pub-id>
  16. [16] Soloha R., Pakere I., Blumberga D. Solar energy use in district heating systems. A case study in Latvia. <em>Energy</em> 2017:137:586–594. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2017.04.151" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2017.04.151</a>">https://doi.org/10.1016/j.energy.2017.04.151</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.energy.2017.04.151" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.energy.2017.04.151</a></dgdoi:pub-id>
  17. [17] Verda V., Colella F. Primary energy savings through thermal storage in district heating networks. <em>Energy</em> 2011:36(7):4278–4286. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2011.04.015" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2011.04.015</a>">https://doi.org/10.1016/j.energy.2011.04.015</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.energy.2011.04.015" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.energy.2011.04.015</a></dgdoi:pub-id>
  18. [18] Noussan M., Cerino-Abdin G., Poggio A., Roberto R. Biomass-fired CHP and heat storage system simulations in existing district heating systems. <em>Applied Thermal Engineering</em> 2014:71(2):729–735. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.applthermaleng.2013.11.021" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.applthermaleng.2013.11.021</a>">https://doi.org/10.1016/j.applthermaleng.2013.11.021</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.applthermaleng.2013.11.021" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.applthermaleng.2013.11.021</a></dgdoi:pub-id>
  19. [19] Wang H., Yin W., Abdollahi E., Lahdelma R., Jiao W. Modelling and optimization of CHP based district heating system with renewable energy production and energy storage. <em>Applied Energy</em> 2015:159:401–421. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.apenergy.2015.09.020" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.apenergy.2015.09.020</a>">https://doi.org/10.1016/j.apenergy.2015.09.020</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.apenergy.2015.09.020" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.apenergy.2015.09.020</a></dgdoi:pub-id>
  20. [20] Streckiene G., Miseviciute V. Research of Operation Modes of Heat Storage Tank in CHP Plant Using Numerical Simulation. <em>Environmental and Climate Technologies</em> 2012:6:91–99. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/v10145-011-0013-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/v10145-011-0013-3</a>">https://doi.org/10.2478/v10145-011-0013-3</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/v10145-011-0013-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10145-011-0013-3</a></dgdoi:pub-id>
  21. [21] Cabeza L. F., Martorell I., Miro L., Fernandez A. I., Barreneche C. Introduction to thermal energy storage (TES) systems. <em>Advances in Thermal Energy Storage Systems</em> 2015:1–28. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1533/9781782420965.1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1533/9781782420965.1</a>">https://doi.org/10.1533/9781782420965.1</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1533/9781782420965.1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1533/9781782420965.1</a></dgdoi:pub-id>
  22. [22] Gadd H., Werner S. Thermal energy storage systems for district heating and cooling. <em>Advances in Thermal Energy Storage Systems</em> 2015:467–478. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1533/9781782420965.4.467" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1533/9781782420965.4.467</a>">https://doi.org/10.1533/9781782420965.4.467</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1533/9781782420965.4.467" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1533/9781782420965.4.467</a></dgdoi:pub-id>
  23. [23] Nordvarme. Korttidslagring av varmt vand i tanke over jorden (Short-term storage of hot water in tanks above ground), 1993. (in Swedish)
  24. [24] Smith A. D., Mago P. J., Fumo N. Benefits of thermal energy storage option combined with CHP system for different commercial building types. <em>Sustainable Energy Technologies and Assessments</em> 2013:1:3–12. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.seta.2012.11.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.seta.2012.11.001</a>">https://doi.org/10.1016/j.seta.2012.11.001</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.seta.2012.11.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.seta.2012.11.001</a></dgdoi:pub-id>
  25. [25] Andrews D., Pardo-Garcia N., Krook-Riekkola A., Tzimas E., Serpa J., Carlsson J., Papaioannou I. Background Report on EU-27 District Heating and Cooling Potentials, Barriers, Best Practice and Measures of Promotion. <em>JRC Scientific and Policy Report</em> 2012. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://setis.ec.europa.eu/system/files/1.DHCpotentials.pdf">https://setis.ec.europa.eu/system/files/1.DHCpotentials.pdf</ext-link>
  26. [26] Volkova A., Hlebnikov A., Siirde A. Simulation of the accumulator tank coupled with the power unit of power plant under the conditions of open electricity market. <em>Chemical Engineering Transactions</em> 2012:29:757–762. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3303/CET1229127" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3303/CET1229127</a>">https://doi.org/10.3303/CET1229127</ext-link>
  27. [27] Pakere I., Purina D., Blumberga D., Bolonina A. Evaluation of Thermal Energy Storage Capacity by Heat Load Analyses. <em>Energy Procedia</em> 2016:95:377–384. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.egypro.2016.09.040" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.egypro.2016.09.040</a>">https://doi.org/10.1016/j.egypro.2016.09.040</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.egypro.2016.09.040" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.egypro.2016.09.040</a></dgdoi:pub-id>
  28. [28] Hast A., Rinne S., Syri S., Kiviluoma J. The role of heat storages in facilitating the adaptation of district heating systems to large amount of variable renewable electricity. <em>Energy</em> 2017:137:775–788. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2017.05.113" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2017.05.113</a>">https://doi.org/10.1016/j.energy.2017.05.113</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.energy.2017.05.113" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.energy.2017.05.113</a></dgdoi:pub-id>
  29. [29] Penttila K. E. Waste-to-Energy Plant as Part of Combined Heat and Power Strategy – Using the Example of the Klaipeda Case. Importance of circular economy is growing. TK Verlag Karl Thome-Kozmiensky, 2012.
  30. [30] CODE2. Case study factsheet Parnu, Estonia, Parnu CHP plant, 2014 [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.code2-project.eu/wp-content/uploads/CODE2-BPC-ES-Parnu-CHP-v1.pdf">http://www.code2-project.eu/wp-content/uploads/CODE2-BPC-ES-Parnu-CHP-v1.pdf</ext-link>
  31. [31] Government of the Republic of Estonia. National Development Plan of the Energy Sector until 2030, 2017 [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.mkm.ee/sites/default/files/ndpes_2030_eng.pdf">https://www.mkm.ee/sites/default/files/ndpes_2030_eng.pdf</ext-link>
  32. [32] Council of European Energy Regulators, Status Review of Renewable Support Schemes in Europe, 2017 [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.ceer.eu/documents/104400/-/-/41df1bfe-d740-1835-9630-4e4cccaf8173">https://www.ceer.eu/documents/104400/-/-/41df1bfe-d740-1835-9630-4e4cccaf8173</ext-link>
  33. [33] Ziemele J., Pakere I., Chernovska L., Blumberga D. Lowering Temperature Regime in District Heating Network for Existing Building Stock. <em>Chemical Engineering Transactions</em> 2016:52:709–714. doi:<a href="https://doi.org/10.3303/CET1652119" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3303/CET1652119</a>
  34. [34] Danish Energy Agency. Individual Heating Plants and Energy Transport Technology Data for Energy Plants, 2012.
  35. [35] Loo L., Maaten B., Konist A., Siirde A., Neshumayev D., Pihu T. Carbon dioxide emission factors for oxy-fuel CFBC and aqueous carbonation of the Ca-rich oil shale ash. <em>Energy Procedia</em> 2017:128:144–149. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.egypro.2017.09.034" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.egypro.2017.09.034</a>">https://doi.org/10.1016/j.egypro.2017.09.034</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.egypro.2017.09.034" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.egypro.2017.09.034</a></dgdoi:pub-id>
  36. [36] Konist A., Maaten B., Loo L., Neshumayev D., Pihu T. Mineral Sequestration of CO<sub>2</sub> by Carboation of Ca-Rich Oil Shale Ash in Natural Conditions. <em>Oil Shale</em> 2016:33(3):248–259. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3176/oil.2016.3.04" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3176/oil.2016.3.04</a>">https://doi.org/10.3176/oil.2016.3.04</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.3176/oil.2016.3.04" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3176/oil.2016.3.04</a></dgdoi:pub-id>
  37. [37] Latosov E., Kurnitski J., Thalfeldt M., Volkova A. Primary Energy Factors for Different District Heating Networks: An Estonian Example. <em>Energy Procedia</em> 2016:96:674–684. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.egypro.2016.09.126" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.egypro.2016.09.126</a>">https://doi.org/10.1016/j.egypro.2016.09.126</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.egypro.2016.09.126" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.egypro.2016.09.126</a></dgdoi:pub-id>
  38. [38] Government of Republic of Estonia. Minimum requirements for energy performance RT I, 2015.
DOI: https://doi.org/10.2478/rtuect-2020-0011 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 171 - 184
Published on: Mar 13, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2020 Anna Volkova, Eduard Latosov, Andres Siirde, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.