[3] Dhaundiyal A., Singh S. B., Hanon M. M., Rawat R. Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus. Environmental and Climate Technologies 2018:22(1):5–21. https://doi.org/10.1515/rtuect-2018-000110.1515/rtuect-2018-0001
[4] Yaroshenko A. P. Theoretical model and experimental study of pore growth during thermal expansion of graphite intercalation compounds. Journal of Thermal Analysis and Calorimetry 2005:79:515–519. https://doi.org/10.1007/s10973-005-0571-310.1007/s10973-005-0571-3
[5] Dhaundiyal A., Tewari P. Kinetic Parameters for the Thermal Decomposition of Forest Waste Using Distributed Activation Energy Model (DAEM). Environmental and Climate Technologies 2017:19(1):15–32. https://doi.org/10.1515/rtuect-2017-000210.1515/rtuect-2017-0002
[7] Galgano A., Blasi C. Di. Modeling Wood Degradation by the Unreacted-Core-Shrinking Approximation. Industrial & Engineering Chemistry Research 2003:42:2101–2111. https://doi.org/10.1021/ie020939o10.1021/ie020939o
[13] Dhaundiyal A., Singh S. B. Distributed activation energy modelling for pyrolysis of forest waste using Gaussian distribution. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences 2016:70(2):64–70. https://doi.org/10.1515/prolas-2016-001110.1515/prolas-2016-0011
[14] Cho W. K. T., Liu Y. Y. Sampling from complicated and unknown distributions: Monte Carlo and Markov Chain Monte Carlo methods for redistricting. Physica A: Statistical Mechanics and its Applications 2018:506:170–178. https://doi.org/10.1016/j.physa.2018.03.09610.1016/j.physa.2018.03.096
[18] Dhaundiyal, A., Toth, L. Modeling of Hardwood Pyrolysis Using the Convex Combination of the Mass Conversion Points. Journal of Energy Resources Technology, Transactions of the ASME 2019:142(6):061901. https://doi.org/10.1115/1.404545810.1115/1.4045458