Have a personal or library account? Click to login
Calculation of Kinetic Parameters of Thermal Decomposition of Forest Waste using the Monte Carlo Technique Cover

Calculation of Kinetic Parameters of Thermal Decomposition of Forest Waste using the Monte Carlo Technique

Open Access
|Mar 2020

References

  1. [1] Capart R., Khezami L., Burnham A. K. Assessment of various kinetic models for the pyrolysis of a microgranular cellulose. <em>Thermochimica Acta</em> 2004:417:79–89. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.tca.2004.01.029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.tca.2004.01.029</a>">https://doi.org/10.1016/j.tca.2004.01.029</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.tca.2004.01.029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.tca.2004.01.029</a></dgdoi:pub-id>
  2. [2] Conesa J. A., Caballero J., Marcilla A., Font R. Analysis of different kinetic models in the dynamic pyrolysis of cellulose. <em>Thermochimica Acta</em> 1995:254:175–192. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/0040-6031(94)02102-T" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/0040-6031(94)02102-T</a>">https://doi.org/10.1016/0040-6031(94)02102-T</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/0040-6031(94)02102-T" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0040-6031(94)02102-T</a></dgdoi:pub-id>
  3. [3] Dhaundiyal A., Singh S. B., Hanon M. M., Rawat R. Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus. <em>Environmental and Climate Technologies</em> 2018:22(1):5–21. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1515/rtuect-2018-0001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1515/rtuect-2018-0001</a>">https://doi.org/10.1515/rtuect-2018-0001</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1515/rtuect-2018-0001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/rtuect-2018-0001</a></dgdoi:pub-id>
  4. [4] Yaroshenko A. P. Theoretical model and experimental study of pore growth during thermal expansion of graphite intercalation compounds. <em>Journal of Thermal Analysis and Calorimetry</em> 2005:79:515–519. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s10973-005-0571-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10973-005-0571-3</a>">https://doi.org/10.1007/s10973-005-0571-3</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s10973-005-0571-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10973-005-0571-3</a></dgdoi:pub-id>
  5. [5] Dhaundiyal A., Tewari P. Kinetic Parameters for the Thermal Decomposition of Forest Waste Using Distributed Activation Energy Model (DAEM). <em>Environmental and Climate Technologies</em> 2017:19(1):15–32. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1515/rtuect-2017-0002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1515/rtuect-2017-0002</a>">https://doi.org/10.1515/rtuect-2017-0002</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1515/rtuect-2017-0002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/rtuect-2017-0002</a></dgdoi:pub-id>
  6. [6] Dhaundiyal A., Singh S. B., Hanon M. M. Study of Distributed Activation Energy Model Using Bivariate Distribution Function, f(E<sub>1</sub>, E<sub>2</sub>). <em>Thermal Science and Engineering Progress</em> 2018:5:388–404. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.tsep.2018.01.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.tsep.2018.01.009</a>">https://doi.org/10.1016/j.tsep.2018.01.009</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.tsep.2018.01.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.tsep.2018.01.009</a></dgdoi:pub-id>
  7. [7] Galgano A., Blasi C. Di. Modeling Wood Degradation by the Unreacted-Core-Shrinking Approximation. <em>Industrial &amp; Engineering Chemistry Research</em> 2003:42:2101–2111. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/ie020939o" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/ie020939o</a>">https://doi.org/10.1021/ie020939o</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1021/ie020939o" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1021/ie020939o</a></dgdoi:pub-id>
  8. [8] Morgan D. J., Brown M. A. Introduction to Thermal Analysis: Techniques and Applications. London and New York: Chapman and Hall, 1988.
  9. [9] Güneş M., Güneş S. The influences of various parameters on the numerical solution of non-isothermal DAEM equation. Thermochimica Acta 1999:336(1–2):93–96. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0040-6031(99)00207-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0040-6031(99)00207-5</a>">https://doi.org/10.1016/S0040-6031(99)00207-5</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0040-6031(99)00207-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0040-6031(99)00207-5</a></dgdoi:pub-id>
  10. [10] Dhaundiyal A., Singh S. B., Hanon M. M. Application of Archimedean copula in the non-isothermal <em>n</em><sup>th</sup> order distributed activation energy model. <em>Biofuels</em> 2019:10:1–12. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/17597269.2018.1442662" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/17597269.2018.1442662</a>">https://doi.org/10.1080/17597269.2018.1442662</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/17597269.2018.1442662" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/17597269.2018.1442662</a></dgdoi:pub-id>
  11. [11] Dhaundiyal A., Singh S. B. Mathematical insight to non-isothermal pyrolysis of pine needles for different probability distribution functions. <em>Biofuels</em> 2018:9(5):647–658. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/17597269.2017.1329495" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/17597269.2017.1329495</a>">https://doi.org/10.1080/17597269.2017.1329495</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/17597269.2017.1329495" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/17597269.2017.1329495</a></dgdoi:pub-id>
  12. [12] Burnham A. K. Introduction to Chemical Kinetics. <em>Global Chemical Kinetics of Fossil Fuels</em> 2017:25–74. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/978-3-319-49634-4_2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-3-319-49634-4_2</a>">https://doi.org/10.1007/978-3-319-49634-4_2</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-3-319-49634-4_2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-319-49634-4_2</a></dgdoi:pub-id>
  13. [13] Dhaundiyal A., Singh S. B. Distributed activation energy modelling for pyrolysis of forest waste using Gaussian distribution. <em>Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences</em> 2016:70(2):64–70. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1515/prolas-2016-0011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1515/prolas-2016-0011</a>">https://doi.org/10.1515/prolas-2016-0011</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1515/prolas-2016-0011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/prolas-2016-0011</a></dgdoi:pub-id>
  14. [14] Cho W. K. T., Liu Y. Y. Sampling from complicated and unknown distributions: Monte Carlo and Markov Chain Monte Carlo methods for redistricting. <em>Physica A: Statistical Mechanics and its Applications</em> 2018:506:170–178. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.physa.2018.03.096" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.physa.2018.03.096</a>">https://doi.org/10.1016/j.physa.2018.03.096</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.physa.2018.03.096" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.physa.2018.03.096</a></dgdoi:pub-id>
  15. [15] Guo X., Liu Z., Xiao Y., Xu X., Xue X., Liu Q. The Boltzmann-Monte-Carlo-Percolation (BMCP) model on pyrolysis of coal: The volatiles’ reactions. <em>Fuel</em> 2018:230:18–26. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.fuel.2018.05.016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.fuel.2018.05.016</a>">https://doi.org/10.1016/j.fuel.2018.05.016</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.fuel.2018.05.016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.fuel.2018.05.016</a></dgdoi:pub-id>
  16. [16] Dhaundiyal A., Abdulrahman T. M., Laszlo T. Thermo-kinetics of Forest Waste Using Model-Free Methods. <em>Multidisciplinary Sciences</em> 2019:24(1):465–495. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.11144/javeriana.sc24-1.tofw" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.11144/javeriana.sc24-1.tofw</a>">https://doi.org/10.11144/javeriana.sc24-1.tofw</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.11144/Javeriana.SC24-1.tofw" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.11144/Javeriana.SC24-1.tofw</a></dgdoi:pub-id>
  17. [17] Korobeinichev O. P., Paletsky A. A., Gonchikzhapov M. B., Shundrina I. K., Chen H., Liu. N. Combustion Chemistry and Decomposition Kinetics of Forest Fuels. <em>Procedia Engineering</em> 2013:62:182–193. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.proeng.2013.08.054" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.proeng.2013.08.054</a>">https://doi.org/10.1016/j.proeng.2013.08.054</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.proeng.2013.08.054" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.proeng.2013.08.054</a></dgdoi:pub-id>
  18. [18] Dhaundiyal, A., Toth, L. Modeling of Hardwood Pyrolysis Using the Convex Combination of the Mass Conversion Points. <em>Journal of Energy Resources Technology, Transactions of the ASME</em> 2019:142(6):061901. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1115/1.4045458" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1115/1.4045458</a>">https://doi.org/10.1115/1.4045458</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1115/1.4045458" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1115/1.4045458</a></dgdoi:pub-id>
  19. [19] Dhaundiyal, A. et al. Analysis of pyrolysis reactor for hardwood (Acacia) chips. <em>Renewable Energy</em> 2020:147(Part 1):1979–1989. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.renene.2019.09.095" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.renene.2019.09.095</a>">https://doi.org/10.1016/j.renene.2019.09.095</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.renene.2019.09.095" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.renene.2019.09.095</a></dgdoi:pub-id>
DOI: https://doi.org/10.2478/rtuect-2020-0010 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 162 - 170
Published on: Mar 9, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2020 Alok Dhaundiyal, Laszlo Toth, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.