Have a personal or library account? Click to login
Calculation of Kinetic Parameters of Thermal Decomposition of Forest Waste using the Monte Carlo Technique Cover

Calculation of Kinetic Parameters of Thermal Decomposition of Forest Waste using the Monte Carlo Technique

By: Alok DhaundiyalORCID and  Laszlo TothORCID  
Open Access
|Mar 2020

References

  1. [1] Capart R., Khezami L., Burnham A. K. Assessment of various kinetic models for the pyrolysis of a microgranular cellulose. Thermochimica Acta 2004:417:79–89. https://doi.org/10.1016/j.tca.2004.01.02910.1016/j.tca.2004.01.029
  2. [2] Conesa J. A., Caballero J., Marcilla A., Font R. Analysis of different kinetic models in the dynamic pyrolysis of cellulose. Thermochimica Acta 1995:254:175–192. https://doi.org/10.1016/0040-6031(94)02102-T10.1016/0040-6031(94)02102-T
  3. [3] Dhaundiyal A., Singh S. B., Hanon M. M., Rawat R. Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus. Environmental and Climate Technologies 2018:22(1):5–21. https://doi.org/10.1515/rtuect-2018-000110.1515/rtuect-2018-0001
  4. [4] Yaroshenko A. P. Theoretical model and experimental study of pore growth during thermal expansion of graphite intercalation compounds. Journal of Thermal Analysis and Calorimetry 2005:79:515–519. https://doi.org/10.1007/s10973-005-0571-310.1007/s10973-005-0571-3
  5. [5] Dhaundiyal A., Tewari P. Kinetic Parameters for the Thermal Decomposition of Forest Waste Using Distributed Activation Energy Model (DAEM). Environmental and Climate Technologies 2017:19(1):15–32. https://doi.org/10.1515/rtuect-2017-000210.1515/rtuect-2017-0002
  6. [6] Dhaundiyal A., Singh S. B., Hanon M. M. Study of Distributed Activation Energy Model Using Bivariate Distribution Function, f(E1, E2). Thermal Science and Engineering Progress 2018:5:388–404. https://doi.org/10.1016/j.tsep.2018.01.00910.1016/j.tsep.2018.01.009
  7. [7] Galgano A., Blasi C. Di. Modeling Wood Degradation by the Unreacted-Core-Shrinking Approximation. Industrial & Engineering Chemistry Research 2003:42:2101–2111. https://doi.org/10.1021/ie020939o10.1021/ie020939o
  8. [8] Morgan D. J., Brown M. A. Introduction to Thermal Analysis: Techniques and Applications. London and New York: Chapman and Hall, 1988.
  9. [9] Güneş M., Güneş S. The influences of various parameters on the numerical solution of non-isothermal DAEM equation. Thermochimica Acta 1999:336(1–2):93–96. https://doi.org/10.1016/S0040-6031(99)00207-510.1016/S0040-6031(99)00207-5
  10. [10] Dhaundiyal A., Singh S. B., Hanon M. M. Application of Archimedean copula in the non-isothermal nth order distributed activation energy model. Biofuels 2019:10:1–12. https://doi.org/10.1080/17597269.2018.144266210.1080/17597269.2018.1442662
  11. [11] Dhaundiyal A., Singh S. B. Mathematical insight to non-isothermal pyrolysis of pine needles for different probability distribution functions. Biofuels 2018:9(5):647–658. https://doi.org/10.1080/17597269.2017.132949510.1080/17597269.2017.1329495
  12. [12] Burnham A. K. Introduction to Chemical Kinetics. Global Chemical Kinetics of Fossil Fuels 2017:25–74. https://doi.org/10.1007/978-3-319-49634-4_210.1007/978-3-319-49634-4_2
  13. [13] Dhaundiyal A., Singh S. B. Distributed activation energy modelling for pyrolysis of forest waste using Gaussian distribution. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences 2016:70(2):64–70. https://doi.org/10.1515/prolas-2016-001110.1515/prolas-2016-0011
  14. [14] Cho W. K. T., Liu Y. Y. Sampling from complicated and unknown distributions: Monte Carlo and Markov Chain Monte Carlo methods for redistricting. Physica A: Statistical Mechanics and its Applications 2018:506:170–178. https://doi.org/10.1016/j.physa.2018.03.09610.1016/j.physa.2018.03.096
  15. [15] Guo X., Liu Z., Xiao Y., Xu X., Xue X., Liu Q. The Boltzmann-Monte-Carlo-Percolation (BMCP) model on pyrolysis of coal: The volatiles’ reactions. Fuel 2018:230:18–26. https://doi.org/10.1016/j.fuel.2018.05.01610.1016/j.fuel.2018.05.016
  16. [16] Dhaundiyal A., Abdulrahman T. M., Laszlo T. Thermo-kinetics of Forest Waste Using Model-Free Methods. Multidisciplinary Sciences 2019:24(1):465–495. https://doi.org/10.11144/javeriana.sc24-1.tofw10.11144/Javeriana.SC24-1.tofw
  17. [17] Korobeinichev O. P., Paletsky A. A., Gonchikzhapov M. B., Shundrina I. K., Chen H., Liu. N. Combustion Chemistry and Decomposition Kinetics of Forest Fuels. Procedia Engineering 2013:62:182–193. https://doi.org/10.1016/j.proeng.2013.08.05410.1016/j.proeng.2013.08.054
  18. [18] Dhaundiyal, A., Toth, L. Modeling of Hardwood Pyrolysis Using the Convex Combination of the Mass Conversion Points. Journal of Energy Resources Technology, Transactions of the ASME 2019:142(6):061901. https://doi.org/10.1115/1.404545810.1115/1.4045458
  19. [19] Dhaundiyal, A. et al. Analysis of pyrolysis reactor for hardwood (Acacia) chips. Renewable Energy 2020:147(Part 1):1979–1989. https://doi.org/10.1016/j.renene.2019.09.09510.1016/j.renene.2019.09.095
DOI: https://doi.org/10.2478/rtuect-2020-0010 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 162 - 170
Published on: Mar 9, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Alok Dhaundiyal, Laszlo Toth, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.