[1] Capart R., Khezami L., Burnham A. K. Assessment of various kinetic models for the pyrolysis of a microgranular cellulose. <em>Thermochimica Acta</em> 2004:417:79–89. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.tca.2004.01.029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.tca.2004.01.029</a>">https://doi.org/10.1016/j.tca.2004.01.029</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.tca.2004.01.029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.tca.2004.01.029</a></dgdoi:pub-id>
[2] Conesa J. A., Caballero J., Marcilla A., Font R. Analysis of different kinetic models in the dynamic pyrolysis of cellulose. <em>Thermochimica Acta</em> 1995:254:175–192. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/0040-6031(94)02102-T" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/0040-6031(94)02102-T</a>">https://doi.org/10.1016/0040-6031(94)02102-T</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/0040-6031(94)02102-T" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0040-6031(94)02102-T</a></dgdoi:pub-id>
[3] Dhaundiyal A., Singh S. B., Hanon M. M., Rawat R. Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus. <em>Environmental and Climate Technologies</em> 2018:22(1):5–21. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1515/rtuect-2018-0001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1515/rtuect-2018-0001</a>">https://doi.org/10.1515/rtuect-2018-0001</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1515/rtuect-2018-0001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/rtuect-2018-0001</a></dgdoi:pub-id>
[4] Yaroshenko A. P. Theoretical model and experimental study of pore growth during thermal expansion of graphite intercalation compounds. <em>Journal of Thermal Analysis and Calorimetry</em> 2005:79:515–519. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s10973-005-0571-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10973-005-0571-3</a>">https://doi.org/10.1007/s10973-005-0571-3</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s10973-005-0571-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10973-005-0571-3</a></dgdoi:pub-id>
[5] Dhaundiyal A., Tewari P. Kinetic Parameters for the Thermal Decomposition of Forest Waste Using Distributed Activation Energy Model (DAEM). <em>Environmental and Climate Technologies</em> 2017:19(1):15–32. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1515/rtuect-2017-0002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1515/rtuect-2017-0002</a>">https://doi.org/10.1515/rtuect-2017-0002</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1515/rtuect-2017-0002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/rtuect-2017-0002</a></dgdoi:pub-id>
[6] Dhaundiyal A., Singh S. B., Hanon M. M. Study of Distributed Activation Energy Model Using Bivariate Distribution Function, f(E<sub>1</sub>, E<sub>2</sub>). <em>Thermal Science and Engineering Progress</em> 2018:5:388–404. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.tsep.2018.01.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.tsep.2018.01.009</a>">https://doi.org/10.1016/j.tsep.2018.01.009</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.tsep.2018.01.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.tsep.2018.01.009</a></dgdoi:pub-id>
[9] Güneş M., Güneş S. The influences of various parameters on the numerical solution of non-isothermal DAEM equation. Thermochimica Acta 1999:336(1–2):93–96. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0040-6031(99)00207-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0040-6031(99)00207-5</a>">https://doi.org/10.1016/S0040-6031(99)00207-5</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0040-6031(99)00207-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0040-6031(99)00207-5</a></dgdoi:pub-id>
[10] Dhaundiyal A., Singh S. B., Hanon M. M. Application of Archimedean copula in the non-isothermal <em>n</em><sup>th</sup> order distributed activation energy model. <em>Biofuels</em> 2019:10:1–12. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/17597269.2018.1442662" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/17597269.2018.1442662</a>">https://doi.org/10.1080/17597269.2018.1442662</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/17597269.2018.1442662" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/17597269.2018.1442662</a></dgdoi:pub-id>
[11] Dhaundiyal A., Singh S. B. Mathematical insight to non-isothermal pyrolysis of pine needles for different probability distribution functions. <em>Biofuels</em> 2018:9(5):647–658. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/17597269.2017.1329495" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/17597269.2017.1329495</a>">https://doi.org/10.1080/17597269.2017.1329495</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/17597269.2017.1329495" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/17597269.2017.1329495</a></dgdoi:pub-id>
[13] Dhaundiyal A., Singh S. B. Distributed activation energy modelling for pyrolysis of forest waste using Gaussian distribution. <em>Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences</em> 2016:70(2):64–70. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1515/prolas-2016-0011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1515/prolas-2016-0011</a>">https://doi.org/10.1515/prolas-2016-0011</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1515/prolas-2016-0011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/prolas-2016-0011</a></dgdoi:pub-id>
[14] Cho W. K. T., Liu Y. Y. Sampling from complicated and unknown distributions: Monte Carlo and Markov Chain Monte Carlo methods for redistricting. <em>Physica A: Statistical Mechanics and its Applications</em> 2018:506:170–178. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.physa.2018.03.096" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.physa.2018.03.096</a>">https://doi.org/10.1016/j.physa.2018.03.096</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.physa.2018.03.096" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.physa.2018.03.096</a></dgdoi:pub-id>
[18] Dhaundiyal, A., Toth, L. Modeling of Hardwood Pyrolysis Using the Convex Combination of the Mass Conversion Points. <em>Journal of Energy Resources Technology, Transactions of the ASME</em> 2019:142(6):061901. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1115/1.4045458" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1115/1.4045458</a>">https://doi.org/10.1115/1.4045458</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1115/1.4045458" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1115/1.4045458</a></dgdoi:pub-id>