Have a personal or library account? Click to login
Reuse Waste Material and Carbon Dioxide Emissions to Save Energy and Approach Sustainable Lightweight Portable Shelters Cover

Reuse Waste Material and Carbon Dioxide Emissions to Save Energy and Approach Sustainable Lightweight Portable Shelters

Open Access
|Mar 2020

References

  1. [1] Hassan W. H., Alkhalidi A. Comparing Between Best Energy Efficient Techniques Worldwide with Existing Solution Implemented in Al-Ahliyya Amman University. International Journal of Thermal and Environmental Engineering 2018:17(1):1–10. https://doi.org/10.5383/ijtee.17.01.00110.5383/ijtee.17.01.001
  2. [2] Verbeke S., Audenaert A. Thermal inertia in buildings: A review of impacts across climate and building use. Renewable and Sustainable Energy Reviews 2018:82(3):2300–2318. https://doi.org/10.1016/j.rser.2017.08.08310.1016/j.rser.2017.08.083
  3. [3] Royal Scientific Society. Green Building Development in Jordan, 2012.
  4. [4] Popp D. International technology transfer, climate change, and the clean development mechanism. Review of Environmental Economics and Policy 2011:5(1):131–152. https://doi.org/10.1093/reep/req01810.1093/reep/req018
  5. [5] Yang L., Li Y. Cooling load reduction by using thermal mass and night ventilation. Energy and Building 2008:40(11):2052–2058. https://doi.org/10.1016/j.enbuild.2008.05.01410.1016/j.enbuild.2008.05.014
  6. [6] Hampton A. Thermal Mass and Insulation for Temperate Climates. Environment Design Guide. 2010:1–11.
  7. [7] Reilly A., Kinnane O. The impact of thermal mass on building energy consumption. Applied Energy 2017:198:108–121. https://doi.org/10.1016/j.apenergy.2017.04.02410.1016/j.apenergy.2017.04.024
  8. [8] Navarro L. et al. Thermal energy storage in building integrated thermal systems: A review. Part 1. active storage systems. Renewable Energy 2016:88:526–547. https://doi.org/10.1016/j.renene.2015.11.04010.1016/j.renene.2015.11.040
  9. [9] Wan Omar W. M. S., Doh J.-H., Panuwatwanich K., Miller D. Assessment of the embodied carbon in precast concrete wall panels using a hybrid life cycle assessment approach in Malaysia. Sustainable Cities and Society 2014:10:101–111. https://doi.org/10.1016/j.scs.2013.06.00210.1016/j.scs.2013.06.002
  10. [10] Zalba B., Marin J. M., Cabeza L. F., Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering 2003:23(3):251–283. https://doi.org/10.1016/s1359-4311(02)00192-810.1016/S1359-4311(02)00192-8
  11. [11] Al-Tamimi N. A., Fadzil S. F. S. The potential of shading devices for temperature reduction in high-rise residential buildings in the tropics. Procedia Engineering 2011:21:273–282. https://doi.org/10.1016/j.proeng.2011.11.201510.1016/j.proeng.2011.11.2015
  12. [12] Hermelink A. et al. Towards nearly zero-energy buildings Definition of common principles under the EPBD Final report Towards nearly zero-energy buildings Definition of common principles under the EPBD, 2012.
  13. [13] Maragogiannis K., Kolokotsa D., Maria E. A. Study of Night Ventilation Efficiency in Urban Environment: Technical and Legal Aspects. Environmental and Climate Technologies 2011:6(1):46–56. https://doi.org/10.2478/v10145-011-0007-110.2478/v10145-011-0007-1
  14. [14] Meir I. A., Roaf S. C. Thermal comfort–thermal mass: housing in hot dry climates. Proc. 9th Int. Conf. on Indoor air quality and climate (ed. H. Levin), vol. 1, 2002.
  15. [15] Siddiqui O., Kumar R., Fung A. S., Zhang D., White M. A., Whitman C. A. Modelling for performance prediction of highly insulated buildings with different types of thermal mass. Applied Thermal Engineering 2017:122:139–147. https://doi.org/10.1016/j.applthermaleng.2017.05.02110.1016/j.applthermaleng.2017.05.021
  16. [16] Alkhalidi A., Jarad H., Juaidy M. Glass Properties Selection Effect on LEED Points for Core and Shell High Rise Residential Building in Jordan. Int. J. Therm. Environ. Eng., 2016:13(1):29–35. http://iasks.org/wp-content/uploads/pdf/IJTEE-1301006.pdf10.5383/ijtee.13.01.006
  17. [17] Alkhalidi A., Kiwan S., Hamasha H. A Comparative Study Between Jordanian Overall Heat Transfer Coefficient (U-Value) and International Building Codes. 10th Int. Renewable Energy Congress (IREC), Sousse, Tunisia, 2019. https://doi.org/10.1109/IREC.2019.875463910.1109/IREC.2019.8754639
  18. [18] Taheri H., Sharma A. An overview of phase change materials for building applications. Green Energy Technologies 2015:201:189–213. https://doi.org/10.1007/978-81-322-2337-5_810.1007/978-81-322-2337-5_8
  19. [19] The Chartered Institution of Building Services Engineers. The limits of thermal comfort : avoiding overheating in European buildings, 2013.
  20. [20] McQuiston F. C. Parker J. D. Heating, Ventiling and Air Conditioning, Analysis and Design. New York: John Wiley & Sons, 1994.
  21. [21] Jawarneh A. M., Al-Shyyab A. S. Potential of Solar Energy in Zarqa Region. International Scholarly and Scientific Research and Innovation 2011:5(4):523–527.
  22. [22] Mukherjee R., Memik S. O. Systematic temperature sensor allocation and placement for microprocessors. Presented at 43rd Annual Design Automation Conference, San Francisco, USA, 2006. https://doi.org/10.1145/1146909.114705110.1145/1146909.1147051
  23. [23] Huynh T. Fundamentals of Thermal Sensors. In: Jha C. (eds) Thermal Sensors. New York: Springer, pp. 5–42, 2015. https://link.springer.com/chapter/10.1007/978-1-4939-2581-0_210.1007/978-1-4939-2581-0_2
  24. [24] Rao Z. H., Zhang G. Q. Thermal properties of paraffin wax-based composites containing graphite. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 2011:33(7):587–593. https://doi.org/10.1080/1556703090311767910.1080/15567030903117679
  25. [25] Elsafty A. F., Joumaa C., Abo Elazm M. M., Elharidi A. M. Case study analysis for building envelop and its effect on environment. Energy Procedia 2013:36:958–966. https://doi.org/10.1016/j.egypro.2013.07.10910.1016/j.egypro.2013.07.109
  26. [26] Elsafty A., Saeid L. Sea water air conditioning: A cost effective alternative. International Journal of Engineering 2009:3(3):346–358.
  27. [27] McQuiston F. C., Parker J. D., Spitler J. D. Heating, Ventilating, and Air Conditioning Analysis and Design, New York: John Wiley & Sons, 2005.
  28. [28] ASHRAE. 2005 ASHRAE Handbook: Fundamentals. ASHRAE, 2005.
  29. [29] Kolokotroni M., Davies M., Croxford B., Bhuiyan S., Mavrogianni A. A validated methodology for the prediction of heating and cooling energy demand for buildings within the Urban Heat Island: Case-study of London. Solar Energy 2010:84(12):2246–2255. https://doi.org/10.1016/j.solener.2010.08.00210.1016/j.solener.2010.08.002
  30. [30] Boduch M., Fincher W. Standards of human comfort. Center for Sustainable Development, pages 1–9, 2009. https://www.scribd.com/document/410985071/1-Boduch-Fincher-Standards-of-Human-Comfort
  31. [31] Neksa P., Rekstad H., Zakeri G. R. Schiefloe P. A. CO2-heat pump water heater: characteristics, system design and experimental results. International Journal of Refrigeration 1998:21(3):172–179. https://doi.org/10.1016/S0140-7007(98)00017-610.1016/S0140-7007(98)00017-6
  32. [32] Slee B., Parkinson T., Hyde R. Quantifying useful thermal mass: How much thermal mass do you need? Architectural Science Review 2014:57(4):271–285. https://doi.org/10.1080/00038628.2014.95131210.1080/00038628.2014.951312
  33. [33] Franklin Associates. Cradle-to-gate life cycle inventory of nine plastic resins and four polyurethane precursors. A Division of Eastern Research Group, Inc. 2010:1(1):572.
  34. [34] Alkhalidi A., Qoaider L., Khashman A., Al-Alami A. R., Jiryes S. Energy and water as indicators for sustainable city site selection and design in Jordan using smart grid. Sustainable Cities and Society 2018:37:125–137. https://doi.org/10.1016/j.scs.2017.10.03710.1016/j.scs.2017.10.037
  35. [35] Yang L., Li Y. Low-carbon city in China. Sustainable Cities and Society 2013:9:62–66. https://doi.org/10.1016/j.scs.2013.03.00110.1016/j.scs.2013.03.001
  36. [36] Yeh J. T., Pennline H. W., Resnik K. P. Study of CO2 Absorption and Desorption in a Packed Column. Energy & Fuels 2001:15(2):274–278. https://doi.org/10.1021/ef000238910.1021/ef0002389
DOI: https://doi.org/10.2478/rtuect-2020-0009 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 143 - 161
Published on: Mar 3, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Ammar Alkhalidi, Yara Nidal Zaytoun, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.