[3] Ayeronfe F., Kassim A., Hung P., Ishak N., Syarifah S., Aripin A. Production of Ligninolytic Enzymes by Coptotermes curvignathus Gut Bacteria. Environmental and Climate Technologies 2019:23(1):111–121. https://doi.org/10.2478/rtuect-2019-000810.2478/rtuect-2019-0008
[8] Sekar T., Ganesan N., Nampoothiri N. Studies on strength characteristics on utilization of waste materials as coarse aggregate in concrete. International Journal of Engineering Science and Technology 2011:3(7):5436–5440.
[12] Mo K.H., Alengaram U.J., Jumaat M.Z., Yap S.P. Feasibility study of high volume slag as cement replacement for sustainable structural lightweight oil palm shell concrete. Journal of cleaner production 2015:91:297–304. https://doi.org/10.1016/j.jclepro.2014.12.02110.1016/j.jclepro.2014.12.021
[14] Delvere I., Iltina M., Shanbayev M., Abildayeva A., Kuzhamberdieva S., Blumberga D. Evaluation of Polymer Matrix Composite Waste Recycling Methods. Environmental and Climate Technologies 2019:23(1):168–187. https://doi.org/10.2478/rtuect-2019-001210.2478/rtuect-2019-0012
[18] Murali G., Vardhan C.V., Prabu R., Khan Z.M.S.A., Mohamed T.A., Suresh T. Experimental investigation on fibre reinforced concrete using waste materials. International Journal of Engineering Research and Applications 2012:2248(9622):278–283.
[19] Ismail Z., Al-Hashmi E. Validation of using mixed iron and plastic wastes in concrete. InPro International Conference on Sustainable Construction Materials and Technologies. Ancona 2010.
[21] Mo K. H., Yap K. K. Q., Alengaram U. J., Jumaat M. Z. The effect of steel fibres on the enhancement of flexural and compressive toughness and fracture characteristics of oil palm shell concrete. Construction and Building Materials 2014:55:20–28. https://doi.org/10.1016/j.conbuildmat.2013.12.10310.1016/j.conbuildmat.2013.12.103
[23] Rashad A. M., Seleem H. E., Shaheen A. F. Effect of silica fume and slag on compressive strength and abrasion resistance of HVFA concrete. International Journal of Concrete Structures and Materials 2014:8(1):69–81. https://doi.org/10.1007/s40069-013-0051-210.1007/s40069-013-0051-2
[24] Wongkeo W., Thongsanitgarn P., Ngamjarurojana A., Chaipanich A. Compressive strength and chloride resistance of self-compacting concrete containing high level fly ash and silica fume. Materials & Design 2014:64:261–269. https://doi.org/10.1016/j.matdes.2014.07.04210.1016/j.matdes.2014.07.042
[30] Shafiq N., Nuruddin M. F., Kamaruddin I. Effectiveness of used engine oil on improvement of properties of fresh and hardened concrete. In Proceedings of the 6th Asia-Pacific Structural Engineering and Construction Conference (APSEC 2006), Kuala Lumpur, Malaysia, 2006.
[31] Shafiq N., Nuruddin M. F., Beddu S. Properties of concrete containing used engine oil. International Journal of Sustainable Construction Engineering and Technology 2011:2(1).
[33] Chin S., Shafiq N., Nuruddin F. Effects of used engine oil in reinforced concrete beams: the structural behaviour. International Journal of Civil and Geological Engineering 2012:6:83–90.
[36] DeDene C. D., You Z. P. The performance of aged asphalt materials rejuvenated with waste engine oil. International Journal of Pavement Research and Technology 2014:7(2):145–152. https://doi.org/10.1061/41186(421)43310.1061/41186(421)433
[38] Svintsov A. P. Effect of Petroleum Products on Physical and Mechanical Properties of Concrete and the Reliability of Load-Bearing Structures. Arabian Journal for Science and Engineering 2018:1–11. https://doi.org/10.1007/s13369-018-3373-110.1007/s13369-018-3373-1