Have a personal or library account? Click to login
Application of Automobile Used Engine Oils and Silica Fume to Improve Concrete Properties for Eco-Friendly Construction Cover

Application of Automobile Used Engine Oils and Silica Fume to Improve Concrete Properties for Eco-Friendly Construction

Open Access
|Feb 2020

References

  1. [1] Gulum M., Bilgin A. Measurement and Prediction of Density and Viscosity of Different Diesel-Vegetable Oil Binary Blends. Environmental and Climate Technologies 2019:23(1):214–228. <a href="https://doi.org/10.2478/rtuect-2019-001410.2478/rtuect-2019-0014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2019-001410.2478/rtuect-2019-0014</a>
  2. [2] Zhang K., Cao Q., Jin LE., Li P., Zhang X. A novel route to utilize waste engine oil by blending it with water and coal. Journal of hazardous materials 2017:332:51–58. <a href="https://doi.org/10.1016/j.jhazmat.2017.02.05210.1016/j.jhazmat.2017.02.052" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhazmat.2017.02.05210.1016/j.jhazmat.2017.02.052</a>
  3. [3] Ayeronfe F., Kassim A., Hung P., Ishak N., Syarifah S., Aripin A. Production of Ligninolytic Enzymes by Coptotermes curvignathus Gut Bacteria. Environmental and Climate Technologies 2019:23(1):111–121. <a href="https://doi.org/10.2478/rtuect-2019-000810.2478/rtuect-2019-0008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2019-000810.2478/rtuect-2019-0008</a>
  4. [4] Dagiliute R., Juozapaitiene G. Stakeholders in the EIA Process: What is Important for them? The Case of Road Construction. Environmental and Climate Technologies 2018:22(1):69–82. <a href="https://doi.org/10.2478/rtuect-2018-000510.2478/rtuect-2018-0005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2018-000510.2478/rtuect-2018-0005</a>
  5. [5] Borghi G., Pantini S., Rigamonti L. Life cycle assessment of non-hazardous Construction and Demolition Waste (CDW) management in Lombardy Region (Italy). Journal of Cleaner Production 2018:184:815–825. <a href="https://doi.org/10.1016/j.jclepro.2018.02.28710.1016/j.jclepro.2018.02.287" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jclepro.2018.02.28710.1016/j.jclepro.2018.02.287</a>
  6. [6] Topcu I. B., Şengel S. Properties of concretes produced with waste concrete aggregate. Cement and Concrete Research 2004:34(8):1307–1312. http://dx.doi.org/<a href="https://doi.org/10.1016/j.cemconres.2003.12.01910.1016/j.cemconres.2003.12.019" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cemconres.2003.12.01910.1016/j.cemconres.2003.12.019</a>
  7. [7] Olorunsogo F., Padayachee N. Performance of recycled aggregate concrete monitored by durability indexes. Cement and Concrete Research 2002:32(2):179–185. <a href="https://doi.org/10.1016/s0008-8846(01)00653-610.1016/S0008-8846(01)00653-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/s0008-8846(01)00653-610.1016/S0008-8846(01)00653-6</a>
  8. [8] Sekar T., Ganesan N., Nampoothiri N. Studies on strength characteristics on utilization of waste materials as coarse aggregate in concrete. International Journal of Engineering Science and Technology 2011:3(7):5436–5440.
  9. [9] Tangchirapat W., Jaturapitakkul C., Chindaprasirt P. Use of palm oil fuel ash as a supplementary cementitious material for producing high-strength concrete. Construction and Building Materials 2009:23(7):2641–2646. <a href="https://doi.org/10.1016/j.conbuildmat.2009.01.00810.1016/j.conbuildmat.2009.01.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2009.01.00810.1016/j.conbuildmat.2009.01.008</a>
  10. [10] Teo D.C.L., Mannan M.A., Kurian V.J. Structural concrete using oil palm shell (OPS) as lightweight aggregate. Turkish Journal of Engineering and Environmental Sciences 2006:30(4):251–257.<a href="https://doi.org/10.3151/jact.4.459" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3151/jact.4.459</a>
  11. [11] Shafigh P., Alengaram U.J., Mahmud H.B., Jumaat M.Z. Engineering properties of oil palm shell lightweight concrete containing fly ash. Materials & Design 2013:49:613–621. <a href="https://doi.org/10.1016/j.matdes.2013.02.00410.1016/j.matdes.2013.02.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.matdes.2013.02.00410.1016/j.matdes.2013.02.004</a>
  12. [12] Mo K.H., Alengaram U.J., Jumaat M.Z., Yap S.P. Feasibility study of high volume slag as cement replacement for sustainable structural lightweight oil palm shell concrete. Journal of cleaner production 2015:91:297–304. <a href="https://doi.org/10.1016/j.jclepro.2014.12.02110.1016/j.jclepro.2014.12.021" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jclepro.2014.12.02110.1016/j.jclepro.2014.12.021</a>
  13. [13] Algin H.M., Turgut P. Cotton and limestone powder wastes as brick material. Construction and Building Materials 2008:22(6):1074–1080. <a href="https://doi.org/10.1016/j.conbuildmat.2007.03.00610.1016/j.conbuildmat.2007.03.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2007.03.00610.1016/j.conbuildmat.2007.03.006</a>
  14. [14] Delvere I., Iltina M., Shanbayev M., Abildayeva A., Kuzhamberdieva S., Blumberga D. Evaluation of Polymer Matrix Composite Waste Recycling Methods. Environmental and Climate Technologies 2019:23(1):168–187. <a href="https://doi.org/10.2478/rtuect-2019-001210.2478/rtuect-2019-0012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2019-001210.2478/rtuect-2019-0012</a>
  15. [15] Alyamaç K.E., Ince R. A preliminary concrete mix design for SCC with marble powders. Construction and Building Materials 2009:23(3):1201–1210. <a href="https://doi.org/10.1016/j.conbuildmat.2008.08.01210.1016/j.conbuildmat.2008.08.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2008.08.01210.1016/j.conbuildmat.2008.08.012</a>
  16. [16] Qian S., Zhou J., De Rooij M., Schlangen E., Ye G., Van Breugel K. Self-healing behavior of strain hardening cementitious composites incorporating local waste materials. Cement and Concrete Composites 2009:31(9):613–621. <a href="https://doi.org/10.1016/j.cemconcomp.2009.03.00310.1016/j.cemconcomp.2009.03.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.cemconcomp.2009.03.00310.1016/j.cemconcomp.2009.03.003</a>
  17. [17] Gencel O., Ozel C., Koksal F., Erdogmus E., Martínez-Barrera G., Brostow W. Properties of concrete paving blocks made with waste marble. Journal of cleaner production 2012:21(1):62–70. <a href="https://doi.org/10.1016/j.jclepro.2011.08.02310.1016/j.jclepro.2011.08.023" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jclepro.2011.08.02310.1016/j.jclepro.2011.08.023</a>
  18. [18] Murali G., Vardhan C.V., Prabu R., Khan Z.M.S.A., Mohamed T.A., Suresh T. Experimental investigation on fibre reinforced concrete using waste materials. International Journal of Engineering Research and Applications 2012:2248(9622):278–283.
  19. [19] Ismail Z., Al-Hashmi E. Validation of using mixed iron and plastic wastes in concrete. InPro International Conference on Sustainable Construction Materials and Technologies. Ancona 2010.
  20. [20] Foti D. Use of recycled waste pet bottles fibers for the reinforcement of concrete. Composite Structures 2013:96:396–404. <a href="https://doi.org/10.1016/j.compstruct.2012.09.01910.1016/j.compstruct.2012.09.019" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.compstruct.2012.09.01910.1016/j.compstruct.2012.09.019</a>
  21. [21] Mo K. H., Yap K. K. Q., Alengaram U. J., Jumaat M. Z. The effect of steel fibres on the enhancement of flexural and compressive toughness and fracture characteristics of oil palm shell concrete. Construction and Building Materials 2014:55:20–28. <a href="https://doi.org/10.1016/j.conbuildmat.2013.12.10310.1016/j.conbuildmat.2013.12.103" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2013.12.10310.1016/j.conbuildmat.2013.12.103</a>
  22. [22] Pelisser F., Zavarise N., Longo T. A., Bernardin A. M. Concrete made with recycled tire rubber: effect of alkaline activation and silica fume addition. Journal of cleaner production 2011:19(6-7):757–763. <a href="https://doi.org/10.1016/j.jclepro.2010.11.01410.1016/j.jclepro.2010.11.014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jclepro.2010.11.01410.1016/j.jclepro.2010.11.014</a>
  23. [23] Rashad A. M., Seleem H. E., Shaheen A. F. Effect of silica fume and slag on compressive strength and abrasion resistance of HVFA concrete. International Journal of Concrete Structures and Materials 2014:8(1):69–81. <a href="https://doi.org/10.1007/s40069-013-0051-210.1007/s40069-013-0051-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s40069-013-0051-210.1007/s40069-013-0051-2</a>
  24. [24] Wongkeo W., Thongsanitgarn P., Ngamjarurojana A., Chaipanich A. Compressive strength and chloride resistance of self-compacting concrete containing high level fly ash and silica fume. Materials & Design 2014:64:261–269. <a href="https://doi.org/10.1016/j.matdes.2014.07.04210.1016/j.matdes.2014.07.042" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.matdes.2014.07.04210.1016/j.matdes.2014.07.042</a>
  25. [25] Elchalakani M. High strength rubberized concrete containing silica fume for the construction of sustainable road side barriers. Journal of Structures 2015:1:20–38. <a href="https://doi.org/10.1016/j.istruc.2014.06.00110.1016/j.istruc.2014.06.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.istruc.2014.06.00110.1016/j.istruc.2014.06.001</a>
  26. [26] Gupta T., Chaudhary S., Sharma R.K. Mechanical and durability properties of waste rubber fiber concrete with and without silica fume. Journal of cleaner production 2016:112:702–711. <a href="https://doi.org/10.1016/j.jclepro.2015.07.08110.1016/j.jclepro.2015.07.081" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jclepro.2015.07.08110.1016/j.jclepro.2015.07.081</a>
  27. [27] Okoye F., Durgaprasad J., Singh N. Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete. Ceramics International 2016:42(2):3000–3006. <a href="https://doi.org/10.1016/j.ceramint.2015.10.08410.1016/j.ceramint.2015.10.084" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ceramint.2015.10.08410.1016/j.ceramint.2015.10.084</a>
  28. [28] Ejeh S., Uche O. Effect of crude oil spill on compressive strength of concrete materials. Journal of Applied Sciences Research 2009:5(10):1756–1761. <a href="https://doi.org/10.1016/j.conbuildmat.2011.06.02810.1016/j.conbuildmat.2011.06.028" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2011.06.02810.1016/j.conbuildmat.2011.06.028</a>
  29. [29] Hamad B. S., Rteil A. A., El-Fadel M. Effect of used engine oil on properties of fresh and hardened concrete. Construction and Building materials 2003:17(5):311-318. <a href="https://doi.org/10.1016/S0950-0618(03)00002-310.1016/S0950-0618(03)00002-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0950-0618(03)00002-310.1016/S0950-0618(03)00002-3</a>
  30. [30] Shafiq N., Nuruddin M. F., Kamaruddin I. Effectiveness of used engine oil on improvement of properties of fresh and hardened concrete. In Proceedings of the 6th Asia-Pacific Structural Engineering and Construction Conference (APSEC 2006), Kuala Lumpur, Malaysia, 2006.
  31. [31] Shafiq N., Nuruddin M. F., Beddu S. Properties of concrete containing used engine oil. International Journal of Sustainable Construction Engineering and Technology 2011:2(1).
  32. [32] Abdelaziz G. Utilization of Used-Engine Oil in Concrete as a Chemical Admixture. Benha University, Egypt, 2011.
  33. [33] Chin S., Shafiq N., Nuruddin F. Effects of used engine oil in reinforced concrete beams: the structural behaviour. International Journal of Civil and Geological Engineering 2012:6:83–90.
  34. [34] Ajagbe W. O., Omokehinde O. S., Alade G. A., Agbede O. A. Effect of crude oil impacted sand on compressive strength of concrete. Construction and Building Materials 2012:26(1):9–12. <a href="https://doi.org/10.1016/j.conbuildmat.2011.06.02810.1016/j.conbuildmat.2011.06.028" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2011.06.02810.1016/j.conbuildmat.2011.06.028</a>
  35. [35] Jia X., Huang B., Bowers B. F., Zhao S. Infrared spectra and rheological properties of asphalt cement containing waste engine oil residues. Construction and Building Materials 2014:50:683–691. <a href="https://doi.org/10.1016/j.conbuildmat.2013.10.01210.1016/j.conbuildmat.2013.10.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2013.10.01210.1016/j.conbuildmat.2013.10.012</a>
  36. [36] DeDene C. D., You Z. P. The performance of aged asphalt materials rejuvenated with waste engine oil. International Journal of Pavement Research and Technology 2014:7(2):145–152. <a href="https://doi.org/10.1061/41186(421)43310.1061/41186(421)433" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1061/41186(421)43310.1061/41186(421)433</a>
  37. [37] Shafiq N., Choo C.S., Isa M.H. Effects of used engine oil on slump, compressive strength and oxygen permeability of normal and blended cement concrete. Construction and Building Materials 2018:187:178–184. <a href="https://doi.org/10.1016/j.conbuildmat.2018.07.19510.1016/j.conbuildmat.2018.07.195" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2018.07.19510.1016/j.conbuildmat.2018.07.195</a>
  38. [38] Svintsov A. P. Effect of Petroleum Products on Physical and Mechanical Properties of Concrete and the Reliability of Load-Bearing Structures. Arabian Journal for Science and Engineering 2018:1–11. <a href="https://doi.org/10.1007/s13369-018-3373-110.1007/s13369-018-3373-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s13369-018-3373-110.1007/s13369-018-3373-1</a>
  39. [39] Ajagbe W. O., Rabiu W.A. Effects of crude oil imparted sand on the durability of concrete. Journal of Civil Engineering and Architecture 2018:6(4):205–211. <a href="https://doi.org/10.13189/cea.2018.06040310.13189/cea.2018.060403" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.13189/cea.2018.06040310.13189/cea.2018.060403</a>
  40. [40] Institution, B.S., BS 12. Specification for ordinary and rapid hardening Portland cement. London, 1978.
  41. [41] Institution, B.S., BS 3148. Methods of test of water for making concrete. London, 1980.
  42. [42] Institution, B.S., BS 882. Aggregates from natural sources for concrete. London, 1983.
  43. [43] Institute, B.S., BS EN 13263-1, Silica Fume for Concrete: Part 1. Definitions, Requirements and Conformity Criteria. London, 2005.
DOI: https://doi.org/10.2478/rtuect-2020-0008 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 123 - 142
Published on: Feb 17, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2020 Ali Mohammed Okashah, Muyideen Abdulkareem, Ahmad Z. M. Ali, Fadilah Ayeronfe, Muhammad Z. A. Majid, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.