[1] Pranuthi G., Dubey S. K., Tripathi S. K., Chandniha S. K. Trend and change point detection of precipitation in urbanizing Districts of Uttarakhand in India. Indian Journal of Science and Technology 2014:7(10):1573–158210.17485/ijst/2014/v7i10.20
[3] Girdhar M. Comparative Geospatial Analysis of Uttarakhand forest fire (India) and Rocky forest fire in US. Presented at 17th ESRI India User Conference, 2017.
[4] Karmaoui A., Balica S. F., Messouli M. Analysis of applicability of flood vulnerability index in Pre-Saharan region, a pilot study to assess flood in Southern Morocco. Natural Hazards and Earth System Sciences, Discuss., 2016:1–24. https://doi.org/10.5194/nhess-2016-9610.5194/nhess-2016-96
[5] Zvingule L, Kalnins S. N, Blumberga D., Gusca J., Bogdanova M., Muizniece I. Improved project management via advancement in evaluation methodology of regional cooperation environmental projects. Environmental and Climate Technologies 2013:11(1):57–67. https://doi.org/10.2478/rtuect-2013-000810.2478/rtuect-2013-0008
[6] Cardona O. D., van Aalst M. K., Birkmann J., Fordham M., McGregor G., Mechler R. Determinants of risk: exposure and vulnerability. Cambridge: Cambridge University Press, 2012.10.1017/CBO9781139177245.005
[10] Villordon M. B. B. Community-based flood vulnerability index for urban flooding: understanding social vulnerabilities and risks. PhD Thesis. Universite de Nice-Sophia Antipolis, 2015.10.1007/978-981-287-615-7_6
[12] Flanagan B. E., Gregory E. W., Hallisey E. J., Heitgerd J. L., Lewis B. A Social Vulnerability Index for Disaster Management. Journal of Homeland Security and Emergency Management. 2011:8(1). https://doi.org/10.2202/1547-7355.179210.2202/1547-7355.1792
[13] Papagiannaki K., Lagouvardos K., Kotroni V., Bezes A. Flash flood occurrence and relation to the rainfall hazard in a highly urbanized area. Natural Hazards and Earth Systems Science 2015:15(8):1859–1871. https://doi.org/10.5194/nhess-15-1859-201510.5194/nhess-15-1859-2015
[14] Das P. K. The Himalayan Tsunami – Cloudburst , Flash Flood & Death Toll: A Geographical Postmortem. IOSR Journal of Environmental Science, Toxicology and Food Technology 2013:7(2):33–45. https://doi.org/10.9790/2402-072334510.9790/2402-0723345
[17] Pubule J., Kalnbalkite A., Teirumnieka E., Blumberga D. Evaluation of the Environmental Engineering Study Programme at University. Environmental and Climate Technologies 2019:23(2):310–324. https://doi.org/10.2478/rtuect-2019-007010.2478/rtuect-2019-0070
[18] Yucel G., Arun G. Earthquake and Physical and Social Vulnerability Assessment for Settlements: Case Study Avcilar District. Presented at World Conference on Earthquake Engineering, Lisbon, Portugal, 2012.
[19] Rimba A. B., Setiawati M. D., Sambah A. B., Miura F. Physical Flood Vulnerability Mapping Applying Geospatial Techniques in Okazaki City, Aichi Prefecture, Japan. Urban Science 2017:1(1):7. https://doi.org/10.3390/urbansci101000710.3390/urbansci1010007
[22] Punia M., Punia N. Socio-economic vulnerability and sustainable development in context of development vs. conservation debate: A study of Bhagirathi Basin, Uttarakhand, India. International Society for Photogrammetry and Remote Sensing 2014: XL-8/1:77–84. https://doi.org/10.5194/isprsarchives-XL-8-77-201410.5194/isprsarchives-XL-8-77-2014
[25] Bejar-Pizarro M., Ezquerro P., Herrera G., Tomas R., Guardiola-Albert C., Hernandez J. M. R., Merodo J. A. F., Marchamalo M., Martinez R. Mapping groundwater level and aquifer storage variations from InSAR measurements in the Madrid aquifer, Central Spain. Journal of Hydrology 2017:547:678–689. https://doi.org/10.1016/j.jhydrol.2017.02.01110.1016/j.jhydrol.2017.02.011
[26] Miezis M., Zvaigznitis K., Stancioff N., Soeftestad L. Climate change and buildings energy efficiency - The key role of residents. Environmental and Climate Technologies 2016:17(1):30–43. https://doi.org/10.1515/rtuect-2016-000410.1515/rtuect-2016-0004
[27] Fekete A. Assessment of Social Vulnerability for River-Floods. United Nations University – Institute for Environmental and Human Security. Thesis, 2009.
[28] Zurovec O., Cadro S., Sitaula B. Quantitative Assessment of Vulnerability to Climate Change in Rural Municipalities of Bosnia and Herzegovina. Sustainability, 2017:9(7):1208. https://doi.org/10.3390/su907120810.3390/su9071208
[32] Flanagan B. E., Hallisey E. J., Gregory E. W., Heitgerd J. L., Lewis B. The Social Vulnerability Index and Toolkit. Journal of Homeland Security and Emergency Management 2013:8(1):1547–7355. https://doi.org/10.2202/1547-7355.179210.2202/1547-7355.1792
[34] Wijaya A. P., Hong J. H. Quantitative assessment of social vulnerability for landslide disaster risk reduction using gis approach (case study: Cilacap regency, province of central Java, Indonesia). International Society of Photogrammetry and Remote Sensing 2018:XLII-4:703–709. https://doi.org/10.5194/isprs-archives-XLII-4-703-201810.5194/isprs-archives-XLII-4-703-2018
[36] Bahinipati C. S. Assessment of vulnerability to cyclones and floods in Odisha, India: a district-level analysis. 2004:107:(12):1997–2007. [Online]. Available: https://www.jstor.org/stable/24216033.
[37] Bhadra A., Bandyopadhyay A., Hodam S., Yimchungru C. Y., Debbarma R. Assessment of Vulnerability of Arunachal Pradesh (India) to Floods. Presented at Int. Water Resource Association Congr., 2015.
[38] Karmeshu N. N., Scatena F. Trend Detection in Annual Temperature & Precipitation using the Mann Kendall Test – A Case Study to Assess Climate Change on Select States in the Northeastern United States. Mausam 2015:66(1):1–6.10.54302/mausam.v66i1.360
[41] Huang Y., Zou Y., Huang G., Maqsood I., Chakma A. Flood vulnerability to climate change through hydrological modeling: A case study of the swift current creek watershed in Western Canada. Water International 2009:30(1):31–39. https://doi.org/10.1080/0250806050869183410.1080/02508060508691834