Have a personal or library account? Click to login
Study of Integrated Social Vulnerability Index SoVIint of Hilly Region of Uttarakhand, India Cover

Study of Integrated Social Vulnerability Index SoVIint of Hilly Region of Uttarakhand, India

Open Access
|Feb 2020

References

  1. [1] Pranuthi G., Dubey S. K., Tripathi S. K., Chandniha S. K. Trend and change point detection of precipitation in urbanizing Districts of Uttarakhand in India. Indian Journal of Science and Technology 2014:7(10):1573–158210.17485/ijst/2014/v7i10.20
  2. [2] S. Kar. Inclusive Growth in Hilly Regions: Priorities for the Uttarakhand Economy. Institute of Economic Growth, 2007.
  3. [3] Girdhar M. Comparative Geospatial Analysis of Uttarakhand forest fire (India) and Rocky forest fire in US. Presented at 17th ESRI India User Conference, 2017.
  4. [4] Karmaoui A., Balica S. F., Messouli M. Analysis of applicability of flood vulnerability index in Pre-Saharan region, a pilot study to assess flood in Southern Morocco. Natural Hazards and Earth System Sciences, Discuss., 2016:1–24. https://doi.org/10.5194/nhess-2016-9610.5194/nhess-2016-96
  5. [5] Zvingule L, Kalnins S. N, Blumberga D., Gusca J., Bogdanova M., Muizniece I. Improved project management via advancement in evaluation methodology of regional cooperation environmental projects. Environmental and Climate Technologies 2013:11(1):57–67. https://doi.org/10.2478/rtuect-2013-000810.2478/rtuect-2013-0008
  6. [6] Cardona O. D., van Aalst M. K., Birkmann J., Fordham M., McGregor G., Mechler R. Determinants of risk: exposure and vulnerability. Cambridge: Cambridge University Press, 2012.10.1017/CBO9781139177245.005
  7. [7] Fernandez P., Mourato S., Moreira M, Pereira L. A new approach for computing a flood vulnerability index using cluster analysis. Physics and Chemistry of the Earth, Parts A/B/C 2016:94:47–55. https://doi.org/10.1016/j.pce.2016.04.00310.1016/j.pce.2016.04.003
  8. [8] Balica S, Wright N. G. Reducing the complexity of the flood vulnerability index. Environmental Hazards 2010:9(4):321–339. https://doi.org/10.3763/ehaz.2010.004310.3763/ehaz.2010.0043
  9. [9] Balica S. F. Applying the flood vulnerability index as a knowledge base for flood risk assessment. IHE Delft Institute of Water Education, 2012.
  10. [10] Villordon M. B. B. Community-based flood vulnerability index for urban flooding: understanding social vulnerabilities and risks. PhD Thesis. Universite de Nice-Sophia Antipolis, 2015.10.1007/978-981-287-615-7_6
  11. [11] Costa R. N., Machado C. J. S. Social and Environmental Vulnerability in Environmental Education Practiced Within the Federal Licensing in Macae (Rio De Janeiro, Brazil). Ambiente&Sociedade 2017:20(1):127–146. https://doi.org/10.1590/1809-4422asoc20150057v201201710.1590/1809-4422asoc20150057v2012017
  12. [12] Flanagan B. E., Gregory E. W., Hallisey E. J., Heitgerd J. L., Lewis B. A Social Vulnerability Index for Disaster Management. Journal of Homeland Security and Emergency Management. 2011:8(1). https://doi.org/10.2202/1547-7355.179210.2202/1547-7355.1792
  13. [13] Papagiannaki K., Lagouvardos K., Kotroni V., Bezes A. Flash flood occurrence and relation to the rainfall hazard in a highly urbanized area. Natural Hazards and Earth Systems Science 2015:15(8):1859–1871. https://doi.org/10.5194/nhess-15-1859-201510.5194/nhess-15-1859-2015
  14. [14] Das P. K. The Himalayan Tsunami – Cloudburst , Flash Flood & Death Toll: A Geographical Postmortem. IOSR Journal of Environmental Science, Toxicology and Food Technology 2013:7(2):33–45. https://doi.org/10.9790/2402-072334510.9790/2402-0723345
  15. [15] Pankaj G. Flash Flood and its Mitigation: A Case Study of Almora, Uttarakhand. India Journal of Environmental Hazards 2018:1:1–7.
  16. [16] Dimri A. P., Chevuturi A., Niyogi D., Thayyen R. J., Ray K., Tripathi S. N., Pandey A. K., Mohanty U. C. Cloudbursts in Indian Himalayas: A review. Earth-Science Reviews 2017:168:1–23. https://doi.org/10.1016/j.earscirev.2017.03.00610.1016/j.earscirev.2017.03.006
  17. [17] Pubule J., Kalnbalkite A., Teirumnieka E., Blumberga D. Evaluation of the Environmental Engineering Study Programme at University. Environmental and Climate Technologies 2019:23(2):310–324. https://doi.org/10.2478/rtuect-2019-007010.2478/rtuect-2019-0070
  18. [18] Yucel G., Arun G. Earthquake and Physical and Social Vulnerability Assessment for Settlements: Case Study Avcilar District. Presented at World Conference on Earthquake Engineering, Lisbon, Portugal, 2012.
  19. [19] Rimba A. B., Setiawati M. D., Sambah A. B., Miura F. Physical Flood Vulnerability Mapping Applying Geospatial Techniques in Okazaki City, Aichi Prefecture, Japan. Urban Science 2017:1(1):7. https://doi.org/10.3390/urbansci101000710.3390/urbansci1010007
  20. [20] Briguglio L., Cordina G., Farrugia N., Vella S. Economic Vulnerability and Resilience: Concepts and Measurements. Oxford Development Studies 2009:37(3):229–247. https://doi.org/10.1080/1360081090308989310.1080/13600810903089893
  21. [21] Adger W. N. Indicators of social and economic vulnerability to climate change in Vietnam. CSERGE GEC Working Paper 1998:42.
  22. [22] Punia M., Punia N. Socio-economic vulnerability and sustainable development in context of development vs. conservation debate: A study of Bhagirathi Basin, Uttarakhand, India. International Society for Photogrammetry and Remote Sensing 2014: XL-8/1:77–84. https://doi.org/10.5194/isprsarchives-XL-8-77-201410.5194/isprsarchives-XL-8-77-2014
  23. [23] Ministry T., Government F. Assessment of Environmental Degradation and Impact of Hydroelectric projects during the June 2013 Disaster in Uttarakhand, Part I. Main Report, April, 2014. [Online] Available: https://sandrp.in/2014/04/29/report-of-expert-committee-on-uttarakhand-flood-disaster-role-of-heps-welcome-recommendations/.
  24. [24] Kumar D., Himanshu S. K. Geographical Information Based Evaluation System for Drought. American Journal of Biological and Environmental Statistics 2017:3(4):49–53. https://doi.org/10.11648/j.ajbes.20170304.1210.11648/j.ajbes.20170304.12
  25. [25] Bejar-Pizarro M., Ezquerro P., Herrera G., Tomas R., Guardiola-Albert C., Hernandez J. M. R., Merodo J. A. F., Marchamalo M., Martinez R. Mapping groundwater level and aquifer storage variations from InSAR measurements in the Madrid aquifer, Central Spain. Journal of Hydrology 2017:547:678–689. https://doi.org/10.1016/j.jhydrol.2017.02.01110.1016/j.jhydrol.2017.02.011
  26. [26] Miezis M., Zvaigznitis K., Stancioff N., Soeftestad L. Climate change and buildings energy efficiency - The key role of residents. Environmental and Climate Technologies 2016:17(1):30–43. https://doi.org/10.1515/rtuect-2016-000410.1515/rtuect-2016-0004
  27. [27] Fekete A. Assessment of Social Vulnerability for River-Floods. United Nations University – Institute for Environmental and Human Security. Thesis, 2009.
  28. [28] Zurovec O., Cadro S., Sitaula B. Quantitative Assessment of Vulnerability to Climate Change in Rural Municipalities of Bosnia and Herzegovina. Sustainability, 2017:9(7):1208. https://doi.org/10.3390/su907120810.3390/su9071208
  29. [29] Gebreyes M., Theodory T. Understanding social vulnerability to climate change using a ‘riskscapes’ lens: Case studies from Ethiopia and Tanzania. Erdkunde 2018:72(2):135–150. https://doi.org/10.3112/erdkunde.2018.02.0510.3112/erdkunde.2018.02.05
  30. [30] Yan X., Li X. Evaluation on social vulnerability to natural disasters. The Anthropologist 2016:24(2):570–580. https://doi.org/10.1080/09720073.2016.1189205110.1080/09720073.2016.11892051
  31. [31] Costa H., Dias L., Grosso N., Garrett P. National flood vulnerability index, 2014.
  32. [32] Flanagan B. E., Hallisey E. J., Gregory E. W., Heitgerd J. L., Lewis B. The Social Vulnerability Index and Toolkit. Journal of Homeland Security and Emergency Management 2013:8(1):1547–7355. https://doi.org/10.2202/1547-7355.179210.2202/1547-7355.1792
  33. [33] Frigerio I., Carnelli F., Cabinio M., De Amicis M. Spatiotemporal Pattern of Social Vulnerability in Italy. International Journal of Disaster Risk Science 2018:9(2):249–262. https://doi.org/10.1007/s13753-018-0168-710.1007/s13753-018-0168-7
  34. [34] Wijaya A. P., Hong J. H. Quantitative assessment of social vulnerability for landslide disaster risk reduction using gis approach (case study: Cilacap regency, province of central Java, Indonesia). International Society of Photogrammetry and Remote Sensing 2018:XLII-4:703–709. https://doi.org/10.5194/isprs-archives-XLII-4-703-201810.5194/isprs-archives-XLII-4-703-2018
  35. [35] Chakraborty A., Joshi P. K. Mapping disaster vulnerability in India using analytical hierarchy process. Geomatics, Natural Hazards and Risk 2017:7(1):308–325. https://doi.org/10.1080/19475705.2014.89765610.1080/19475705.2014.897656
  36. [36] Bahinipati C. S. Assessment of vulnerability to cyclones and floods in Odisha, India: a district-level analysis. 2004:107:(12):1997–2007. [Online]. Available: https://www.jstor.org/stable/24216033.
  37. [37] Bhadra A., Bandyopadhyay A., Hodam S., Yimchungru C. Y., Debbarma R. Assessment of Vulnerability of Arunachal Pradesh (India) to Floods. Presented at Int. Water Resource Association Congr., 2015.
  38. [38] Karmeshu N. N., Scatena F. Trend Detection in Annual Temperature & Precipitation using the Mann Kendall Test – A Case Study to Assess Climate Change on Select States in the Northeastern United States. Mausam 2015:66(1):1–6.10.54302/mausam.v66i1.360
  39. [39] Mujumdar P. P. Implications of climate change for sustainable water resources management in India. Physics and Chemistry of the Earth, Parts A/B/C 2008:33(5):354–358. https://doi.org/10.1016/j.pce.2008.02.01410.1016/j.pce.2008.02.014
  40. [40] Aneseyee A. B. The Effect of Climate Change on Water Resources Potential of Omo Gibe Basin, Ethiopia. Environmental Engineering 2013. https://doi.org/10.21203/rs.2.19417/v110.21203/rs.2.19417/v1
  41. [41] Huang Y., Zou Y., Huang G., Maqsood I., Chakma A. Flood vulnerability to climate change through hydrological modeling: A case study of the swift current creek watershed in Western Canada. Water International 2009:30(1):31–39. https://doi.org/10.1080/0250806050869183410.1080/02508060508691834
  42. [42] Gupta S. Modeling district level economic disparities across Uttarakhand, India. IOSR Journal of Humanities and Social Science 2014:19(2):84–90. https://doi.org/10.9790/0837-1925849010.9790/0837-19258490
  43. [43] Yadav A. S., Pandey D. C. Demographic Attributes and Population Dynamics: Study from Himalayan State of Uttarakhand, India. 2017:22(8):50–57.
  44. [44] Uttarakhand Action Plan on Climate Change: Transforming Crisis into Opportunity, 2014. [Online] Available: http://www.forest.uk.gov.in/files/USAPCC/Uttarakhand_SAPCC.pdf.
  45. [45] Chambers S. Uttarakhand: Disaster as a Tragedy. Critical Concerns, 2013. [Online]. Available: http://www.doccentre.net/cc/cc_uttarakhand.pdf.
DOI: https://doi.org/10.2478/rtuect-2020-0007 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 105 - 122
Published on: Feb 7, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Dilip Kumar, Rajib Kumar Bhattacharjya, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.