Have a personal or library account? Click to login
Investigation on Physicochemical Properties of Wastewater Grown Microalgae Methyl Ester and its Effects on CI Engine Cover

Investigation on Physicochemical Properties of Wastewater Grown Microalgae Methyl Ester and its Effects on CI Engine

By: Sara TayariORCID,  Reza AbediORCID and  Ali AbediORCID  
Open Access
|Feb 2020

References

  1. [1] Demirbas A., Demirbas M. F. Algae energy: algae as a new source of biodiesel. London: Springer, 2010. https://doi.org/10.1007/978-1-84996-050-210.1007/978-1-84996-050-2
  2. [2] Gulum M., Bilgin A. An Experimental Optimization Research of Methyl and Ethyl Esters Production from Safflower Oil. Environmental and Climate Technologies 2018:22(1):132–148. https://doi.org/10.2478/rtuect-2018-000910.2478/rtuect-2018-0009
  3. [3] Ahmad A. L., Yasin M. N. H., Derek C. J. C., Lim J. K. Microalgae as a sustainable energy source for biodiesel production: a review. Renewable and Sustainable Energy Reviews 2011:15(1):584–593. https://doi.org/10.1016/j.rser.2010.09.01810.1016/j.rser.2010.09.018
  4. [4] Pittman J. K., Dean A. P., Osundeko O. The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology 2011:102(1):17–25. https://doi.org/10.1016/j.biortech.2010.06.03510.1016/j.biortech.2010.06.03520594826
  5. [5] Lam M. K., Lee K. T. Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnology Advances 2012:30(3):673–690. https://doi.org/10.1016/j.biotechadv.2011.11.00810.1016/j.biotechadv.2011.11.00822166620
  6. [6] Maity J. P., Bundschuh J., Chen C.-Y., Bhattacharya P. Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives – a mini review. Energy 2014:78:104–113. https://doi.org/10.1016/j.energy.2014.04.00310.1016/j.energy.2014.04.003
  7. [7] Elegbede I., Guerrero C. Algae biofuel in the Nigerian energy context. Environmental and Climate Technologies 2016:17:44–60. https://doi.org/10.1515/rtuect-2016-000510.1515/rtuect-2016-0005
  8. [8] Qari H., Rehan M., Nizami A.-S. Key issues in microalgae biofuels: a short review. Energy Procedia 2017:142:898–903. https://doi.org/10.1016/j.egypro.2017.12.14410.1016/j.egypro.2017.12.144
  9. [9] Chen J., Li J., Dong W., Zhang X., Tyagi D. R., Drogui P., Surampalli Y. The potential of microalgae in biodiesel production. Renewable and Sustainable Energy Reviews 2018:90:336–346. https://doi.org/10.1016/j.rser.2018.03.07310.1016/j.rser.2018.03.073
  10. [10] Mussgnug J. H., Klassen V., Schluter A., Kruse O. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology 2010:150(1):51–56. https://doi.org/10.1016/j.jbiotec.2010.07.03010.1016/j.jbiotec.2010.07.03020691224
  11. [11] Wijffels R. H., Kruse O., Hellingwerf K. J. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Current Opinion in Biotechnology 2013:24(3):405–413. https://doi.org/10.1016/j.copbio.2013.04.00410.1016/j.copbio.2013.04.004
  12. [12] Guiry M. D. How many species of algae are there? Journal of Phycology 2012:48(5):1057–1063. https://doi.org/10.1111/j.1529-8817.2012.01222.x10.1111/j.1529-8817.2012.01222.x
  13. [13] Griffiths M. J., Harrison S. T. L. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology 2009:21(5):493–507. https://doi.org/10.1007/s10811-008-9392-710.1007/s10811-008-9392-7
  14. [14] Al-lwayzy S. H., Yusaf T., Al-Juboori R. A. Biofuels from the fresh water microalgae Chlorella vulgaris (FWM-CV) for diesel engines. Energies 2014:7(3):1829–1851. https://doi.org/10.3390/en703182910.3390/en7031829
  15. [15] Rodolfi L., Zittelli G. C., Bassi N., Padovani G., Biondi N., Bonini G., Tredici M. R. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering 2009:102(1):100–112. https://doi.org/10.1002/bit.2203310.1002/bit.22033
  16. [16] Chan Y., Jun S.-Y., Lee J.-Y., Ahn C.-Y., Oh H.-M. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology 2010:101(1):71–74. https://doi.org/10.1016/j.biortech.2009.03.03010.1016/j.biortech.2009.03.030
  17. [17] Xiaoli C., Zhao X. Enhanced removal of carbon dioxide and alleviation of dissolved oxygen accumulation in photobioreactor with bubble tank. Bioresource Technology 2012:116:360–365. https://doi.org/10.1016/j.biortech.2012.03.10510.1016/j.biortech.2012.03.105
  18. [18] Lukasz B., Patyna A., Placzek M., Witczak S. Cultivation of microalgae (Chlorella vulgaris) in laboratory photobioreactor. Economic and Environmental Studies 2016:4:843–852.
  19. [19] Yang J., Xu M., Zhang X., Hu O., Sommerfeld M., Chen Y. Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresource Technology 2011:102(1):159–165. https://doi.org/10.1016/j.biortech.2010.07.01710.1016/j.biortech.2010.07.017
  20. [20] Zhukova N. V., Aizdaicher N. A. Fatty acid composition of 15 species of marine microalgae. Phytochemistry 1995:39(2):351–356. https://doi.org/10.1016/0031-9422(94)00913-E10.1016/0031-9422(94)00913-E
  21. [21] Yousef H., Selim M. Y. E., Abdulrehman T. Combustion of algae oil methyl ester in an indirect injection diesel engine. Energy 2011:36(3):1827–1835. https://doi.org/10.1016/j.energy.2010.11.01710.1016/j.energy.2010.11.017
  22. [22] Chen Y. H., Huang B. Y., Chiang T. H., Tang T. C. Fuel properties of microalgae (Chlorella protothecoides) oil biodiesel and its blends with petroleum diesel. Fuel 2012:94:270–273. https://doi.org/10.1016/j.fuel.2011.11.03110.1016/j.fuel.2011.11.031
  23. [23] Al-Lwayzy S. H., Yusaf T. Chlorella protothecoides microalgae as an alternative fuel for tractor diesel engines. Energies 2013:6(2):766–783. https://dx.doi.org/10.3390/en602076610.3390/en6020766
  24. [24] Tuccar G., Aydın K. Evaluation of methyl ester of microalgae oil as fuel in a diesel engine. Fuel 2013:112:203–207. https://doi.org/10.1016/j.fuel.2013.05.01610.1016/j.fuel.2013.05.016
  25. [25] Makareviciene V., Lebedevas S., Rapalis P., Gumbyte M., Skorupskaite V., Zaglinskis J. Performance and emission characteristics of diesel fuel containing microalgae oil methyl esters. Fuel 2014:120:233–239. https://doi.org/10.1016/j.fuel.2013.11.04910.1016/j.fuel.2013.11.049
  26. [26] Ozsezen A. N., Canakci M., Turkcan A., Sayin C. Performance and combustion characteristics of a DI diesel engine fueled with waste palm oil and canola oil methyl esters. Fuel 2009:88(4):629–636. https://doi.org/10.1016/j.fuel.2008.09.02310.1016/j.fuel.2008.09.023
  27. [27] An H., Yang W. M., Maghbouli A., Li J., Chou S. K., Chua K. J. Performance, combustion and emission characteristics of biodiesel derived from waste cooking oils. Applied Energy 2013:112:493–499. https://doi.org/10.1016/j.apenergy.2012.12.04410.1016/j.apenergy.2012.12.044
  28. [28] Chen Y.-H., Huang B.-Y., Chiang T.-H., Tang T.-C. Fuel properties of microalgae (Chlorella protothecoides) oil biodiesel and its blends with petroleum diesel, Fuel 2012:94:270–273. https://doi.org/10.1016/j.fuel.2011.11.03110.1016/j.fuel.2011.11.031
  29. [29] Satputaley S. S., Zodpe D. B., Deshpande N. V. Performance, combustion and emission study on CI engine using microalgae oil and microalgae oil methyl esters. Journal of the Energy Institute 2017:90(4):1–9. https://doi.org/10.1016/j.joei.2016.05.01110.1016/j.joei.2016.05.011
  30. [30] Islam M. A., Rahman M. M., Heimann K., Nurun M. N., Ristovski Z. D., Dowell A., Thomas G., Feng B., Von Alvensleben N., Brown J. R. Combustion analysis of microalgae methyl ester in a common rail direct injection diesel engine. Fuel 2015:143:351–360. https://doi.org/10.1016/j.fuel.2014.11.06310.1016/j.fuel.2014.11.063
  31. [31] Jitesh P., Kumar S. N., Deep A., Sharma A., Gupta D. Evaluation of emission characteristics of blend of algae oil methyl ester with diesel in a medium capacity diesel engine. Technical Paper 2014:01:378, SAE International, 2014. https://doi.org/10.4271/2014-01-137810.4271/2014-01-1378
  32. [32] Mwangi J. K., Lee W.-J., Whang L.-M., Wu T. S., Chen W.-H., Chang J.-S., Chen C.-Y., Chen C.-L. Microalgae oil: Algae cultivation and harvest, algae residue torrefaction and diesel engine emissions tests. Aerosol and Air Quality Research 2015:15(1):81–98. https://doi.org/10.4209/aaqr.2014.10.026810.4209/aaqr.2014.10.0268
  33. [33] Thangavel M., Kumar T. S., Chandrasekar M., Uma L., Prabaharan D. Assessment of fuel properties, engine performance and emission characteristics of outdoor grown marine Chlorella vulgaris BDUG 91771 biodiesel. Renewable Energy 2017:105:637–646. https://doi.org/10.1016/j.renene.2016.12.09010.1016/j.renene.2016.12.090
  34. [34] Al-lwayzy S. H., Yusaf T. Diesel engine performance and exhaust gas emissions using Microalgae Chlorella protothecoides biodiesel. Renewable Energy 2017:101:690–701. https://doi.org/10.1016/j.renene.2016.09.03510.1016/j.renene.2016.09.035
  35. [35] Satputaley S. S., Zodpe D. B., Deshpande N. V. Performance, combustion and emission study on CI engine using microalgae oil and microalgae oil methyl esters. Journal of the Energy Institute 2017:90(4):513–521. https://doi.org/10.1016/j.joei.2016.05.01110.1016/j.joei.2016.05.011
  36. [36] Wahlen B. D., Morgan M. R., McCurdy A. T., Willis R. M., Morgan M. D., Dye D. J., Bugbee B., Wood B. D., Seefeldt L. C. Biodiesel from microalgae, yeast, and bacteria: engine performance and exhaust emissions. Energy & Fuels 2012:27(1):220–228. https://doi.org/10.1021/ef301238210.1021/ef3012382
  37. [37] Devendra S., Subramanian K. A., Juneja M., Singh K., Singh S., Badola R., Singh N. Investigating the effect of fuel cetane number, oxygen content, fuel density, and engine operating variables on NOx emissions of a heavy duty diesel engine. Environmental Progress & Sustainable Energy 2017:36(1):214–221. https://doi.org/10.1002/ep.1243910.1002/ep.12439
  38. [38] Devendra S., Singal S. K., Garg M. O., Maiti P., Mishra S., Ghosh P. K. Transient performance and emission characteristics of a heavy-duty diesel engine fuelled with microalga Chlorella variabilis and Jatropha curcas biodiesels. Energy Conversion and Management 2015:106:892–900. https://doi.org/10.1016/j.enconman.2015.10.02310.1016/j.enconman.2015.10.023
  39. [39] Farhad M. H., Rainey T. J., Ristovski Z., Brown R. J. Performance and exhaust emissions of diesel engines using microalgae FAME and the prospects for microalgae HTL biocrude. Renewable and Sustainable Energy Reviews 2018:82:4269–4278. https://doi.org/10.1016/j.rser.2017.06.02610.1016/j.rser.2017.06.026
  40. [40] Scragg A. H., Morrison J., Shales S. W. The use of a fuel containing Chlorella vulgaris in a diesel engine. Enzyme and Microbial Technology 2003:33(7):884–889. https://doi.org/10.1016/j.enzmictec.2003.01.00110.1016/j.enzmictec.2003.01.001
  41. [41] Pulz O. Photobioreactors: production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology 2001:57(3):287–293. https://doi.org/10.1007/s00253010070210.1007/s00253010070211759675
  42. [42] Bitog J. P., Lee I.-B., Lee C.-G., Kim K.-S., Hwang H.-S., Hong S.-W., Seo I.-H., Kwon K.-S., Mostafa E. Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: a review. Computers and Electronics in Agriculture 2011:76(2):131–147. https://doi.org/10.1016/j.compag.2011.01.01510.1016/j.compag.2011.01.015
  43. [43] Kong W., Song H., Cao Y., Yang H., Hua S., Xia C. The characteristics of biomass production, lipid accumulation and chlorophyll biosynthesis of Chlorella vulgaris under mixotrophic cultivation. African Journal of Biotechnology 2011:10(55):11620–11630.
  44. [44] Huda Q., Rehan M., Nizami A.-S. Key issues in microalgae biofuels: a short review. Energy Procedia 2017:142:898–903. https://doi.org/10.1016/j.egypro.2017.12.14410.1016/j.egypro.2017.12.144
  45. [45] Rahman M. M., Pourkhesalian A. M., Jahirul M. I., Stevanovic S., Pham P. X., Wang H., Masri A. R., Brown R. J., Ristovski Z. D. Particle emissions from biodiesels with different physical properties and chemical composition. Fuel 2014:134:201–208. https://doi.org/10.1016/j.fuel.2014.05.05310.1016/j.fuel.2014.05.053
  46. [46] Buyukkaya E. Effects of biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel 2010:89(10):3099–3105. https://doi.org/10.1016/j.fuel.2010.05.03410.1016/j.fuel.2010.05.034
  47. [47] Mofijur M., Atabani A. E., al Masjuki H. H., Kalam M. A., Masum B. M. A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation. Renewable and Sustainable Energy Reviews 2013:23:391–404. https://doi.org/10.1016/j.rser.2013.03.00910.1016/j.rser.2013.03.009
  48. [48] Ghazali W. N. M. W., Mamat R., Masjuki H. H., Gholamhassan N. Effects of biodiesel from different feedstocks on engine performance and emissions: A review. Renewable and Sustainable Energy Reviews 2015:51:585–602. https://doi.org/10.1016/j.rser.2015.06.03110.1016/j.rser.2015.06.031
  49. [49] Murillo S., Miguez J. L., Porteiro J., Granada E., Moran J. C. Performance and exhaust emissions in the use of biodiesel in outboard diesel engines. Fuel 2007:86:1765–1771. https://doi.org/10.1016/j.fuel.2006.11.03110.1016/j.fuel.2006.11.031
DOI: https://doi.org/10.2478/rtuect-2020-0005 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 72 - 87
Published on: Feb 1, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Sara Tayari, Reza Abedi, Ali Abedi, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.