Have a personal or library account? Click to login
Oil Spill Detection Using Multi Remote Piloted Aircraft for the Environmental Monitoring of Sea Aquatorium Cover

Oil Spill Detection Using Multi Remote Piloted Aircraft for the Environmental Monitoring of Sea Aquatorium

Open Access
|Jan 2020

References

  1. [1] Urbahs A., Zavtkevics V. Oil Pollution Monitoring of Sea Aquatorium Features with Using Unmanned Aerial Vehicles. Presented at the 18th International Conference Kaunas, Lithuania 2014:75–78.
  2. [2] Brekke C., Solbergb A. Oil spill detection by satellite remote sensing [Online]. [Accessed 30.11.2017]. Available: https://pdfs.semanticscholar.org/af8d/474288595d6bb7b1b90e530c16ca17d647c8.pdf
  3. [3] Muttin F. Modeling of captive Unmanned Aerial System tele detecting oil pollution on sea surface. John Wiley & Sons, 2014. <a href="https://doi.org/10.1002/9781119003021.ch710.1002/9781119003021.ch7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/9781119003021.ch710.1002/9781119003021.ch7</a>
  4. [4] Urbahs A., Jonaite I. Features of the use of unmanned aerial vehicles for agriculture applications. Aviation 2013:17:170–175. <a href="https://doi.org/10.3846/16487788.2013.86122410.3846/16487788.2013.861224" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3846/16487788.2013.86122410.3846/16487788.2013.861224</a>
  5. [5] Fingas M., Brown C. Review of Oil Spill Remote Sensing. Marine Pollution Bulletin 2014:83:9–23. <a href="https://doi.org/10.1016/j.marpolbul.2014.03.05910.1016/j.marpolbul.2014.03.05924759508" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.marpolbul.2014.03.05910.1016/j.marpolbul.2014.03.05924759508</a>
  6. [6] Urbahs A., Zavtkevics V. Remote Piloted Aircraft using for sampling of oil spill. Presented in the proceedings of Transport Means 2017. The 21st international scientific conference. Part 2, Kaunas, Lithuania, 2017.
  7. [7] Urbahs A., Zavtkevics V. Remotely Piloted Aircraft route optimization when performing oil pollution monitoring of the sea aquatorium. Aviation 2017:21:170–175. <a href="https://doi.org/10.3846/16487788.2017.134413910.3846/16487788.2017.1344139" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3846/16487788.2017.134413910.3846/16487788.2017.1344139</a>
  8. [8] Dijkstra E. A note on two problems in connection with graphs. Numerische Mathematik 1959:1:269–271. <a href="https://doi.org/10.1007/BF0138639010.1007/BF01386390" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/BF0138639010.1007/BF01386390</a>
  9. [9] Dantzig G., Fulkerson R., Johnson S. Solution of a Large-Scale Traveling-Salesman Problem. Journal of the Operations Research Society of America 1954:2:393–410. <a href="https://doi.org/10.1287/opre.2.4.39310.1287/opre.2.4.393" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1287/opre.2.4.39310.1287/opre.2.4.393</a>
  10. [10] Adubi S., Misra S. A comparative study on the ant colony optimization algorithms. Presented in the 11th International Conference on Electronics, Computer and Computation (ICECCO), Abuja, Nigeria, 2014.<a href="https://doi.org/10.1109/ICECCO.2014.6997567" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICECCO.2014.6997567</a>
  11. [11] Walter B., Sannier A., Reiners D., Oliver J. UAV Swarm Control: Calculating Digital Pheromone Fields with the GPU. The Journal of Defense Modeling and Simulation Applications, Methodology, Technology 2006:3:167–176. https://doi.org/10.1177%2F15485129060030030410.1177/154851290600300304
  12. [12] Niccolini M., Pollini L., Innocenti L. Cooperative Control for Multiple Autonomous Vehicles Using Descriptor Functions. The Journal of Sensor and Actuator Networks 2014:3:26–43. <a href="https://doi.org/10.3390/jsan301002610.3390/jsan3010026" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/jsan301002610.3390/jsan3010026</a>
  13. [13] Eaton C., Chong K., Maciejewski A. Multiple-Scenario Unmanned Aerial System Control: A Systems Engineering Approach and Review of Existing Control Methods. Aerospace 2016:3. http://dx.doi.org/<a href="https://doi.org/10.3390/aerospace301000110.3390/aerospace3010001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/aerospace301000110.3390/aerospace3010001</a>
  14. [14] Rubio J. C., Vagners J., Rysdyk R. Adaptive path planning for autonomous UAV oceanic search missions. Presented at the Intelligent Systems Technical Conference, Chicago, USA, 2004. <a href="https://doi.org/10.2514/6.2004-622810.2514/6.2004-6228" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2514/6.2004-622810.2514/6.2004-6228</a>
  15. [15] Cottam R., Ranson W., Vounckx R. Autocreative hierarchy II: dynamics self-organization, emergence and level-changing. Presented at the International Conference on Integration of Knowledge Intensive Multi-Agent Systems, Cambridge, USA, 2003. <a href="https://doi.org/10.1109/KIMAS.2003.124513410.1109/KIMAS.2003.1245134" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/KIMAS.2003.124513410.1109/KIMAS.2003.1245134</a>
  16. [16] Sun A., Liu H. Cooperative UAV Search for Moving Targets Using a Modified Diffusion Uncertainty Model, 2009. http://dx.doi.org/<a href="https://doi.org/10.2514/6.2009-577910.2514/6.2009-5779" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2514/6.2009-577910.2514/6.2009-5779</a>
  17. [17] Cummings M., Bruni S., Mercier S., Mitchell P. Automation Architecture for Single Operator, Multiple UAV Command and Control. International C2 Journal 2007.
  18. [18] AeroVations Associates. Autonomous Civil Unmanned Aircraft Systems Software Quality Assessment and Safety Assurance. Autonomous Unmanned Aircraft Systems 2914, 2007.
  19. [19] Belta C., Kumar V. Abstractions and control for groups of robots. IEEE Transactions on Robotics 2004:20:865–875. <a href="https://doi.org/10.1109/TRO.2004.82949810.1109/TRO.2004.829498" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/TRO.2004.82949810.1109/TRO.2004.829498</a>
  20. [20] Bertuccelli L., How J. Robust UAV Search for Environments with Imprecise Probability Maps. Presented at the IEEE Conference on Decision and Control, and the European Control Conference, Seville, Spain, 2005. <a href="https://doi.org/10.1109/CDC.2005.158306810.1109/CDC.2005.1583068" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/CDC.2005.158306810.1109/CDC.2005.1583068</a>
  21. [21] Zhang C., Pei H. Oil Spills Boundary Tracking Using Universal Kriging and Model Predictive Control by UAV. Presented at the 11th World Congress on Intelligent Control and Automation, Shenyang, China, 2014.
  22. [22] Hirsch M. J., Schroeder D. On the Decentralized Cooperative Control of Multiple Autonomous Vehicles. Handbook of Unmanned Aerial Vehicles. Springer, 2015. <a href="https://doi.org/10.1007/978-90-481-9707-1_11210.1007/978-90-481-9707-1_112" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-90-481-9707-1_11210.1007/978-90-481-9707-1_112</a>
  23. [23] Beni G. From swarm intelligence to swarm robotics. Swarm Robotics. Berlin: Springer, 2004. <a href="https://doi.org/10.1007/978-3-540-30552-1_110.1007/978-3-540-30552-1_1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-3-540-30552-1_110.1007/978-3-540-30552-1_1</a>
  24. [24] Fallahi K., Leung H., Chandana S. An Integrated ACO-AHP Approach for Resource Management Optimization. Presented at the IEEE International Conference on Systems, Man, and Cybernetics, San Antonio, USA, 2009.<a href="https://doi.org/10.1109/ICSMC.2009.5346794" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICSMC.2009.5346794</a>
  25. [25] Koparan C., Koc A., Privette C., Sawyer C. Evaluation of a UAV-Assisted Autonomous water Sampling. Water 2018:10(5):655. <a href="https://doi.org/10.3390/w1005065510.3390/w10050655" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/w1005065510.3390/w10050655</a>
  26. [26] Soysal O., Sahin E. A macroscopic model for self-organized aggregation in swarm robotic systems. Swarm Robotics. Berlin: Springer, 2007:27–42. <a href="https://doi.org/10.1007/978-3-540-71541-2_310.1007/978-3-540-71541-2_3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-3-540-71541-2_310.1007/978-3-540-71541-2_3</a>
  27. [27] Urbahs A., Zavtkevics V. Unmanned aerial vehicle for collecting samples from the surface of water. EU patent EP3112840 (A1).
  28. [28] Urbahs A., Zavtkevics V. Water sampling method of oil pollution and for analysis using unmanned aerial vehicle with fixed wings and device for method perform. LV patent application P-15-88 2015-08-20.
  29. [29] Kittipongvises S. Assessment of Environmental Impacts of Limestone Quarrying Operations in Thailand. Environmental and Climate Technologies 2017:20:67–83. <a href="https://doi.org/10.1515/rtuect-2017-001110.1515/rtuect-2017-0011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1515/rtuect-2017-001110.1515/rtuect-2017-0011</a>
  30. [30] Avotniece Z., Briede A., Klavins M., Aniskevich S. Remote Sensing Observations of Thunderstorm Features in Latvia. Environmental and Climate Technologies 2017:21:28–46. <a href="https://doi.org/10.1515/rtuect-2017-001410.1515/rtuect-2017-0014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1515/rtuect-2017-001410.1515/rtuect-2017-0014</a>
  31. [31] Dagiliute R., Juozapaitiene G. Stakeholders in the EIA Process: What is Important for Them? The Case of Road Construction. Environmental and Climate Technologies 2018:22:69–82. <a href="https://doi.org/10.2478/rtuect-2018-000510.2478/rtuect-2018-0005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2018-000510.2478/rtuect-2018-0005</a>
  32. [32] Bajcinovci B. Environment Quality: Impact from Traffic, Power Plant and Land Morphology, a Case Study of Prishtina. Environmental and Climate Technologies 2017:19:65–74. <a href="https://doi.org/10.1515/rtuect-2017-000610.1515/rtuect-2017-0006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1515/rtuect-2017-000610.1515/rtuect-2017-0006</a>
DOI: https://doi.org/10.2478/rtuect-2020-0001 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 1 - 22
Published on: Jan 19, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2020 Aleksandrs Urbahs, Vladislavs Zavtkevics, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.