Have a personal or library account? Click to login
Energy, Bioeconomy, Climate Changes and Environment Nexus Cover

Energy, Bioeconomy, Climate Changes and Environment Nexus

Open Access
|Dec 2019

References

  1. [1] Jaccard M. Sustainable Fossil Fuels: The Unusual Suspect in the Quest for Clean and Enduring Energy. Cambridge: Cambridge University Press, 2005.
  2. [2] Edenhofer O. P.-M. Climate Change 2014 Mitigation of Climate Change Summary for Policymakers and Technical Summary, Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). IPCC, 2015.
  3. [3] Amarala A. R., Rodrigues E., Gaspar A. R., Gomes A. Review on performance aspects of nearly zero-energy districts. Sustainable Cities and Society 2018:43:406–420. doi:10.1016/j.scs.2018.08.03910.1016/j.scs.2018.08.039
  4. [4] Villa-Arrieta M., Sumperb A. Economic evaluation of Nearly Zero Energy Cities. Applied Energy 2019:237:404–416. doi:10.1016/j.apenergy.2018.12.08210.1016/j.apenergy.2018.12.082
  5. [5] Di Ruocco G., Sicignano C., Sessa A. Integrated Methodologies Energy Efficiency of Historic Buildings. Procedia Engineering 2017:180:1653–1663. doi:10.1016/j.proeng.2017.04.32810.1016/j.proeng.2017.04.328
  6. [6] Berg F., Flyen A. C., Godbolt A. L., Brostrom T. User-driven energy efficiency in historic buildings: A review. Journal of Cultural Heritage 2017:28:188–195. doi:10.1016/j.culher.2017.05.00910.1016/j.culher.2017.05.009
  7. [7] Lodi C., Magli S., Contini F. M., Muscio A., Tartarini P. Improvement of thermal comfort and energy efficiency in historical and monumental buildings by means of localized heating based on non-invasive electric radiant panels. Applied Thermal Engineering 2017:126(5):276–289. doi:10.1016/j.applthermaleng.2017.07.07110.1016/j.applthermaleng.2017.07.071
  8. [8] Moroni S., Alberti V., Antoniucci V., Bisello A. Energy communities in the transition to a low-carbon future: A taxonomical approach and some policy dilemmas. Journal of Environmental Management 2019:236:45–53. doi:10.1016/j.jenvman.2019.01.09510.1016/j.jenvman.2019.01.09530711741
  9. [9] Karunathilake H., Hewage K., Merida W., Sadiq R. Renewable energy selection for net-zero energy communities: Life cycle based decision making under uncertainty. Renewable Energy 2019:130:558–573. doi:10.1016/j.renene.2018.06.08610.1016/j.renene.2018.06.086
  10. [10] Alanne K., Cao S. Zero-energy hydrogen economy (ZEH2E) for buildings and communities including personal mobility. Renewable and Sustainable Energy Reviews 2017:71:697–711. doi:10.1016/j.rser.2016.12.09810.1016/j.rser.2016.12.098
  11. [11] REScoop [Online]. Available: https://www.rescoop.eu/news
  12. [12] Blumberga D., Vigants H., Cilinskis E., Vitolins V., Borisova I., Khabdullin A., Khabdullin A., Khabdullina Z., Khabdullina G., Veidenbergs I. Energy Efficiency and Energy Management Nexus. Energy Procedia 2016:96:71–75. doi:10.1016/j.egypro.2016.09.02310.1016/j.egypro.2016.09.023
  13. [13] Martí-Ballester C.-P. Sustainable energy systems and company performance: Does the implementation of sustainable energy systems improve companies’ financial performance? Journal of Cleaner Production 2017:162:S35–S50. doi:10.1016/j.jclepro.2016.12.01510.1016/j.jclepro.2016.12.015
  14. [14] Liu P., Lin B., Wu X., Zhou H. Bridging energy performance gaps of green office buildings via more targeted operations management: A system dynamics approach. Journal of Environmental Management 2019:238:64–71. doi:10.1016/j.jenvman.2019.02.11110.1016/j.jenvman.2019.02.11130849599
  15. [15] Liu B., Evans M., Yu S., Roshchanka V., Dukkipati S., Sreenivas A. Effective energy data management for low-carbon growth planning: An analytical framework for assessment. Energy Policy 2017:107:32–42. doi:10.1016/j.enpol.2017.03.05910.1016/j.enpol.2017.03.059
  16. [16] Schlör H., Venghaus S., Marker C., Hake J.-F. Managing the resilience space of the German energy system – A vector analysis. Journal of Environmental Management 2018:218:527–539. doi:10.1016/j.jenvman.2018.04.05310.1016/j.jenvman.2018.04.05329709821
  17. [17] Fedak W., Anweiler S., Ulbrich R., Jarosz B. The Concept of Autonomous Power Supply System Fed with Renewable Energy Sources. Journal of Sustainable Development of Energy, Water and Environment Systems 2017:5(4):579–589. doi:10.13044/j.sdewes.d5.016010.13044/j.sdewes.d5.0160
  18. [18] Zavadskiy V., Revalde G. Possibility of Using Electric Power Storage Systems in Rural Regions with Combination of Renewable Energy Sources for Autonomous Energy Supply. 18th International Scientific Conference “Engineering for Rural Development”, Jelgava, Latvia, May 22–24, 2019. doi:10.22616/ERDev2019.18.N48110.22616/ERDev2019.18.N481
  19. [19] Chang X., Wu R., Ma T. Impact of urban development on residents’ public transportation travel energy consumption in China: An analysis of hydrogen fuel cell vehicles alternatives. International Journal on Hydrogen Energy 2019:44(30):16015–16027. doi:10.1016/j.ijhydene.2018.09.09910.1016/j.ijhydene.2018.09.099
  20. [20] Papież M., Smiech S., Frodyma K. Determinants of renewable energy development in the EU countries. A 20-year perspective. Renewable and Sustainable Energy Reviews 2018:91:918–934. doi:10.1016/j.rser.2018.04.07510.1016/j.rser.2018.04.075
  21. [21] Gökgöz F., Guvercin M. T. Energy security and renewable energy efficiency in EU. Renewable and Sustainable Energy Reviews 2018:96:226–239. doi:10.1016/j.rser.2018.07.04610.1016/j.rser.2018.07.046
  22. [22] Siksnelyte I., Zavadskas E.K., Bausys R., Streimikiene D. Implementation of EU energy policy priorities in the Baltic Sea Regioncountries: Sustainability assessment based on neutrosophic MULTIMOORA method. Energy Policy 2019:125:90–102. doi:10.1016/j.enpol.2018.10.01310.1016/j.enpol.2018.10.013
  23. [23] Caldés N., Del Rio P., Lechon Y., Gerbeti A. Renewable Energy Cooperation in Europe: What Next? Drivers and Barriers to the Use of Cooperation Mechanisms. Energies 2019:12:70. doi:10.3390/en1201007010.3390/en12010070
  24. [24] Khanam T., Rahman A., Mola-Udego B., Pelkonen P., Perez Y., Pykalainen J. Achievable or unbelievable? Expert perceptions of the European Union targets for emissions, renewables, and efficiency. Energy Research & Social Science 2017:34:144–153. doi:10.1016/j.erss.2017.06.04010.1016/j.erss.2017.06.040
  25. [25] Liobikienė G., Butkus M. The European Union possibilities to achieve targets of Europe 2020 and Paris agreement climate policy. Renewable Energy 2017:106:298–309. doi:10.1016/j.renene.2017.01.03610.1016/j.renene.2017.01.036
  26. [26] Ionescu R.-V., Filip L.-M. Europe 2020 Strategy vs Global Environment Protection’s Challenge. Oeconomica 2017:13(5):222–235.
  27. [27] Walnum H. T., Hauge A. L., Lindberg K. B., Mysen M., Nielsen B. F., Sornes K. Developing a scenario calculator for smart energy communities in Norway: Identifying gaps between vision and practice. Sustainable Cities and Society 2019:46:101418. doi:10.1016/j.scs.2019.01.00310.1016/j.scs.2019.01.003
  28. [28] Bel G., Joseph S. Climate change mitigation and the role of technological change: Impact on selected headline targets of Europe’s 2020 climate and energy package. Renewable and Sustainable Energy Reviews 2018:82(3):3798–3807. doi:10.1016/j.rser.2017.10.09010.1016/j.rser.2017.10.090
  29. [29] Fulli G., Masera M., Spisto A., Vitielo S. How Regulation and Innovation Are Reshaping the European Union’s Electricity Markets. IEEE Power and Energy Magazine 2019:17(1):53–66. doi:10.1109/MPE.2018.287230310.1109/MPE.2018.2872303
  30. [30] Cronin J., Anandarajah G., Dessens O. Climate change impacts on the energy system: a review of trends and gaps. Climatic Change 2018:151(2):79–93. doi:10.1007/s10584-018-2265-410.1007/s10584-018-2265-4640473830930505
  31. [31] Lin Q. G., Zhai M. Y., Huang G. H., Wang X. Z., Zhong L. F., Pi J. W. Adaptation planning of community energy systems to climatic change over Canada. Journal of Cleaner Production 2017:143:686–698. doi:10.1016/j.jclepro.2016.12.05710.1016/j.jclepro.2016.12.057
  32. [32] Guerra O. J., Reklaitis G. V. Advances and challenges in water management within energy systems. Renewable and Sustainable Energy Reviews 2018:82(3):4009–4019. doi:10.1016/j.rser.2017.10.07110.1016/j.rser.2017.10.071
DOI: https://doi.org/10.2478/rtuect-2019-0102 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 370 - 392
Published on: Dec 13, 2019
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Dagnija Blumberga, Bin Chen, Alise Ozarska, Zane Indzere, Dace Lauka, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.