[1] Wensing J., Carraresi L., Bröring S. Do pro-environmental values, beliefs and norms drive farmers’ interest in novel practices fostering the Bioeconomy? Journal of Environmental Management 2019:232:858–867. doi:10.1016/j.jenvman.2018.11.11410.1016/j.jenvman.2018.11.11430530276
[2] Menéndez A. J. L., Pérez R., Moreno B. Environmental costs and renewable energy: Re-visiting the Environmental Kuznets Curve. Journal of Environmental Management 2014:145:368–373. doi:10.1016/j.jenvman.2014.07.01710.1016/j.jenvman.2014.07.01725124789
[7] European Union. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Union 2009:L140:16–62.
[14] Buongiorno J., Raunikar R., Zhu S. Consequences of increasing bioenergy demand on wood and forests: An application of the Global Forest Products Model. Journal of Forest Economics 2011:17(2):214–229. 10.1016/j.jfe.2011.02.00810.1016/j.jfe.2011.02.008
[16] Muizniece I., Gravelsins A., Brauners I., Blumberga A., Blumberga D. Innovative bioproducts from forest biomass. Method of analysis. Energy Procedia 2017:113:434–441. doi:10.1016/j.egypro.2017.04.03510.1016/j.egypro.2017.04.035
[17] Budzianowski W. M. High-value low-volume bioproducts coupled to bioenergies with potential to enhance business development of sustainable biorefineries. Renewable and Sustainable Energy Reviews 2017:70:793–804. doi:10.1016/j.rser.2016.11.26010.1016/j.rser.2016.11.260
[18] Zorb C., et al. Biobased Resources and Value Chains. In: Lewandowski I. Bioeconomy. Shaping the Transition to a Sustainable, Biobased Economy. Cham: Springer, 2018.10.1007/978-3-319-68152-8_5
[20] Tribot A., Amer G., Abdou Alio M., de Baynast H., Delattre C., Pons A., Mathias J. D., Callois J. M., Vial C., Michaud P., Dussap C. G. Wood-lignin: Supply, extraction process and use as bio-based material. European Polymer Journal 2019:112:228–240. doi:10.1016/j.eurpolymj.2019.01.00710.1016/j.eurpolymj.2019.01.007
[21] Neis F. A., de Costa F., de Araujo Jr. A. T., Fett J. P., Fett-Neto A. G. Multiple industrial uses of non-wood pine products. Industrial Crops & Products 2019:130:248–258. doi:10.1016/j.indcrop.2018.12.08810.1016/j.indcrop.2018.12.088
[22] Faraca G., Boldrin A., Astrup T. Resource quality of wood waste: The importance of physical and chemical impurities in wood waste for recycling. Waste Management 2019:87:135–147. doi:10.1016/j.wasman.2019.02.00510.1016/j.wasman.2019.02.00531109513
[24] The Federal Facilities Council Ad Hoc Task Group on Integrating Sustainable Design. Sustainable federal facilities: a guide to integrating value engineering, life-cycle costing, and sustainable development. Life-Cycle Costing, and Value Engineering into Facilities Acquisition. Federal facilities council technical report No. 142. Washington: National academy press, 2001.
[26] Coccia M. Foresight of technological determinants and primary energy resources of future economic long waves. Int. J. Foresight and Innovation Policy 2010:6(4):225–232.10.1504/IJFIP.2010.037468
[27] Coccia M. A Theory of the General Causes of Long Waves: War, General Purpose Technologies, and Economic Change. Technological Forecasting & Social Change 2018:128:287–295. doi:10.1016/j.techfore.2017.11.01310.1016/j.techfore.2017.11.013
[30] Jungmeier G., Van Ree R., de Jong E., Stichnothe H., de Bari I., Jørgensen H., Wellisch M., Bell G., Spaeth J., Torr K., Kimura S. The biorefinery fact sheet and its application to Wood Based biorefining. IEA bioenergy task 42 Biorefining.
[35] Hansen K. Decision-making based on energy costs: Comparing levelized cost of energy and energy system costs. Energy Strategy Reviews 2019:24:68–82. doi:10.1016/j.esr.2019.02.00310.1016/j.esr.2019.02.003
[36] Sandvall F., Ahlgren E. O., Ekvall T. Cost-efficiency of urban heating strategies – modelling scale effects of low-energy building heat supply. Energy Strategy Reviews 2017:18:212–223. doi:10.1016/J.ESR.2017.10.00310.1016/J.ESR.2017.10.003
[37] Renewable Energy Guidance. Guidance for assessing the greenhouse gas impacts of renewable energy policies. Appendix A: Overview of LCOE Method for RE Sources. Verra: New Climate Institute, 2018.
[39] Coccia M. The source and nature of general purpose technologies for supporting next K-waves: Global leadership and the case study of the U.S. Navy’s Mobile User Objective System. Technological Forecasting & Social Change 2017:116:331–339. doi:10.1016/j.techfore.2016.05.01910.1016/j.techfore.2016.05.019
[41] Alam S. S., Nor N. F. M., Ahmad M., Hashim N. H. N. A Survey on Renewable Energy Development in Malaysia: Current Status, Problems and Prospects. Environmental and Climate Technologies 2016:17(1):5–17. doi:10.1515/rtuect-2016-000210.1515/rtuect-2016-0002
[42] Klavins M., Bisters V., Burlakovs J. Small Scale Gasification Application and Perspectives in Circular Economy. Environmental and Climate Technologies 2018:22(1):42–54. doi:10.2478/rtuect-2018-000310.2478/rtuect-2018-0003
[43] Höglmeier K., Steubing B., Weber-Blaschke G., Richter K. LCA-based optimization of wood utilization under special consideration of a cascading use of wood. Journal of Environmental Management 2015:152:158–170. doi:10.1016/j.jenvman.2015.01.01810.1016/j.jenvman.2015.01.01825660355