Have a personal or library account? Click to login
When Bioeconomy Development Becomes a Biomass Energy Competitor Cover

When Bioeconomy Development Becomes a Biomass Energy Competitor

Open Access
|Dec 2019

References

  1. [1] Wensing J., Carraresi L., Bröring S. Do pro-environmental values, beliefs and norms drive farmers’ interest in novel practices fostering the Bioeconomy? Journal of Environmental Management 2019:232:858–867. doi:10.1016/j.jenvman.2018.11.11410.1016/j.jenvman.2018.11.11430530276
  2. [2] Menéndez A. J. L., Pérez R., Moreno B. Environmental costs and renewable energy: Re-visiting the Environmental Kuznets Curve. Journal of Environmental Management 2014:145:368–373. doi:10.1016/j.jenvman.2014.07.01710.1016/j.jenvman.2014.07.01725124789
  3. [3] Caineng Z., Qun Z., Guosheng Z., Bo X. Energy revolution: From a fossil energy era to a new energy era. Natural Gas Industry B 2016:3(1):1–11. doi:10.1016/j.ngib.2016.02.00110.1016/j.ngib.2016.02.001
  4. [4] Blumberga D. Biotehonomika (Biotechonomy). Riga: RTU Izdevniecība, 2016. (in Latvian)
  5. [5] Björheden R. Drivers behind the development of forest energy in Sweden. Biomass and Bioenergy 2006:30(4):289–295. doi:10.1016/j.biombioe.2005.07.00510.1016/j.biombioe.2005.07.005
  6. [6] Lewandowski I. Securing a sustainable biomass supply in a growing bioeconomy. Global Food Security 2015:6:34–42. doi:10.1016/j.gfs.2015.10.00110.1016/j.gfs.2015.10.001
  7. [7] European Union. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Union 2009:L140:16–62.
  8. [8] WBA 2017. Global Bioenergy Statistics 2017 [Online]. Available: https://worldbioenergy.org/uploads/WBA%20GBS%202017_hq.pdf
  9. [9] UNECE/FAO 2018. Joint Wood Energy Enquiry [Online]. Available: https://www.unece.org/forests/jwee.html
  10. [10] Eurostat 2019. Renewable energy statistics [Online]. Available: https://ec.europa.eu/eurostat/statistics-explained/index.php/Renewable_energy_statistics
  11. [11] Eurostat 2018. Primary production of renewable energy by type [Online]. Available: https://ec.europa.eu/eurostat/web/products-datasets/-/ten00081
  12. [12] Lauri P., Kallio A. M. I., Schneider U. A. Price of CO2 emissions and use of wood in Europe. Forest Policy and Economics 2012:15:123–131. doi:10.1016/j.forpol.2011.10.00310.1016/j.forpol.2011.10.003
  13. [13] Moiseyev A., Solberg B., Kallio A. M. I. The impact of subsidies and carbon pricing on the wood biomass use for energy in the EU. Energy 2014:76:161–167. doi:10.1016/j.energy.2014.05.05110.1016/j.energy.2014.05.051
  14. [14] Buongiorno J., Raunikar R., Zhu S. Consequences of increasing bioenergy demand on wood and forests: An application of the Global Forest Products Model. Journal of Forest Economics 2011:17(2):214–229. 10.1016/j.jfe.2011.02.00810.1016/j.jfe.2011.02.008
  15. [15] Muizniece I., Blumberga D. Wood resources for energy production sector in Latvia. Is it a sustainable solution? Energy Procedia 2017:128:287–291. doi:10.1016/j.egypro.2017.09.07610.1016/j.egypro.2017.09.076
  16. [16] Muizniece I., Gravelsins A., Brauners I., Blumberga A., Blumberga D. Innovative bioproducts from forest biomass. Method of analysis. Energy Procedia 2017:113:434–441. doi:10.1016/j.egypro.2017.04.03510.1016/j.egypro.2017.04.035
  17. [17] Budzianowski W. M. High-value low-volume bioproducts coupled to bioenergies with potential to enhance business development of sustainable biorefineries. Renewable and Sustainable Energy Reviews 2017:70:793–804. doi:10.1016/j.rser.2016.11.26010.1016/j.rser.2016.11.260
  18. [18] Zorb C., et al. Biobased Resources and Value Chains. In: Lewandowski I. Bioeconomy. Shaping the Transition to a Sustainable, Biobased Economy. Cham: Springer, 2018.10.1007/978-3-319-68152-8_5
  19. [19] Wang H., Pu Y., Ragauskas A., Yang B. From lignin to valuable products – strategies, challenges, and prospects. Bioresource Technology 2019:271:449–461. doi:10.1016/j.biortech.2018.09.07210.1016/j.biortech.2018.09.07230266464
  20. [20] Tribot A., Amer G., Abdou Alio M., de Baynast H., Delattre C., Pons A., Mathias J. D., Callois J. M., Vial C., Michaud P., Dussap C. G. Wood-lignin: Supply, extraction process and use as bio-based material. European Polymer Journal 2019:112:228–240. doi:10.1016/j.eurpolymj.2019.01.00710.1016/j.eurpolymj.2019.01.007
  21. [21] Neis F. A., de Costa F., de Araujo Jr. A. T., Fett J. P., Fett-Neto A. G. Multiple industrial uses of non-wood pine products. Industrial Crops & Products 2019:130:248–258. doi:10.1016/j.indcrop.2018.12.08810.1016/j.indcrop.2018.12.088
  22. [22] Faraca G., Boldrin A., Astrup T. Resource quality of wood waste: The importance of physical and chemical impurities in wood waste for recycling. Waste Management 2019:87:135–147. doi:10.1016/j.wasman.2019.02.00510.1016/j.wasman.2019.02.00531109513
  23. [23] Vis M., Mantau U., Allen B. Study on the optimised cascading use of wood. Final report. Brussels: European Commission, 2016.
  24. [24] The Federal Facilities Council Ad Hoc Task Group on Integrating Sustainable Design. Sustainable federal facilities: a guide to integrating value engineering, life-cycle costing, and sustainable development. Life-Cycle Costing, and Value Engineering into Facilities Acquisition. Federal facilities council technical report No. 142. Washington: National academy press, 2001.
  25. [25] Kondratieff N. D., Stolper W. F. The long waves in economic life. The Review of Economics and Statistics 1935:17(6):105–115.10.2307/1928486
  26. [26] Coccia M. Foresight of technological determinants and primary energy resources of future economic long waves. Int. J. Foresight and Innovation Policy 2010:6(4):225–232.10.1504/IJFIP.2010.037468
  27. [27] Coccia M. A Theory of the General Causes of Long Waves: War, General Purpose Technologies, and Economic Change. Technological Forecasting & Social Change 2018:128:287–295. doi:10.1016/j.techfore.2017.11.01310.1016/j.techfore.2017.11.013
  28. [28] IRENA. Bioenergy data [Online]. Available: https://www.irena.org/bioenergy
  29. [29] The Biorefinery fact sheet. IEA bioenergy task 42 Biorefining [Online]. Available: https://www.iea-bioenergy.task42-biorefineries.com/en/ieabiorefinery.htm
  30. [30] Jungmeier G., Van Ree R., de Jong E., Stichnothe H., de Bari I., Jørgensen H., Wellisch M., Bell G., Spaeth J., Torr K., Kimura S. The biorefinery fact sheet and its application to Wood Based biorefining. IEA bioenergy task 42 Biorefining.
  31. [31] Stacy T. F., Taylor G. S. The levelized Cost of Electricity from Existing Generation Resources. Institute of Energy Research, 2015.
  32. [32] Namovicz C. Assessing the Economic Value of New Utility-Scale Generation Projects. EIA LCOE/LACE Workshop, 2013.
  33. [33] Lauka D. Sustainability analysis of renewable energy sources. PhD Thesis. Riga: RTU, 2018.
  34. [34] U.S. Energy Information Administration. Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook, 2018.
  35. [35] Hansen K. Decision-making based on energy costs: Comparing levelized cost of energy and energy system costs. Energy Strategy Reviews 2019:24:68–82. doi:10.1016/j.esr.2019.02.00310.1016/j.esr.2019.02.003
  36. [36] Sandvall F., Ahlgren E. O., Ekvall T. Cost-efficiency of urban heating strategies – modelling scale effects of low-energy building heat supply. Energy Strategy Reviews 2017:18:212–223. doi:10.1016/J.ESR.2017.10.00310.1016/J.ESR.2017.10.003
  37. [37] Renewable Energy Guidance. Guidance for assessing the greenhouse gas impacts of renewable energy policies. Appendix A: Overview of LCOE Method for RE Sources. Verra: New Climate Institute, 2018.
  38. [38] Wood Energy company Example financial projections [Online]. Available: http://www.woodenergy.com/media/77994/binder-brochure-low-res-v02.pdf
  39. [39] Coccia M. The source and nature of general purpose technologies for supporting next K-waves: Global leadership and the case study of the U.S. Navy’s Mobile User Objective System. Technological Forecasting & Social Change 2017:116:331–339. doi:10.1016/j.techfore.2016.05.01910.1016/j.techfore.2016.05.019
  40. [40] International Renewable Energy Agency. Renewable Power Generation Costs in 2017. Abu Dhabi: International Renewable Energy Agency, 2018.
  41. [41] Alam S. S., Nor N. F. M., Ahmad M., Hashim N. H. N. A Survey on Renewable Energy Development in Malaysia: Current Status, Problems and Prospects. Environmental and Climate Technologies 2016:17(1):5–17. doi:10.1515/rtuect-2016-000210.1515/rtuect-2016-0002
  42. [42] Klavins M., Bisters V., Burlakovs J. Small Scale Gasification Application and Perspectives in Circular Economy. Environmental and Climate Technologies 2018:22(1):42–54. doi:10.2478/rtuect-2018-000310.2478/rtuect-2018-0003
  43. [43] Höglmeier K., Steubing B., Weber-Blaschke G., Richter K. LCA-based optimization of wood utilization under special consideration of a cascading use of wood. Journal of Environmental Management 2015:152:158–170. doi:10.1016/j.jenvman.2015.01.01810.1016/j.jenvman.2015.01.01825660355
DOI: https://doi.org/10.2478/rtuect-2019-0100 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 347 - 359
Published on: Dec 13, 2019
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Dace Lauka, Dzintra Slisane, Linda Ievina, Indra Muizniece, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.