Have a personal or library account? Click to login
Sprayed Water Flowrate, Temperature and Drop Size Effects on Small Capacity Flue Gas Condenser’s Performance Cover

Sprayed Water Flowrate, Temperature and Drop Size Effects on Small Capacity Flue Gas Condenser’s Performance

Open Access
|Dec 2019

References

  1. [1] Geng L., et al. The end effect in air pollution: The role of perceived difference. Journal of Environmental Management 2019:232:413–420. doi:10.1016/j.jenvman.2018.11.05610.1016/j.jenvman.2018.11.05630500705
  2. [2] Ziyarati T. M., et al. Greenhouse gas emission estimation of flaring in a gas processing plant: Technique development. Process Safety and Environmental Protection 2019:123:289–298. doi:10.1016/j.psep.2019.01.00810.1016/j.psep.2019.01.008
  3. [3] Wu W., Jin Y., Carlsten C. Inflammatory health effects of indoor and outdoor particulate matter. Journal of Allergy and Clinical Immunology 2018:141(3):845. doi:10.1016/j.jaci.2017.12.98110.1016/j.jaci.2017.12.98129519450
  4. [4] Kim K. H., Kabir E., Kabir S. A review on the human health impact of airborne particulate matter. Environment International 2015:74:136–143. doi:10.1016/j.envint.2014.10.00510.1016/j.envint.2014.10.00525454230
  5. [5] CSB. Vides rādītāji Latvijā 2016. gadā. (Environmental indicators in Latvia 2016.) Riga: CSB, 2017:6.
  6. [6] World health organization Media centre. WHO | Ambient (outdoor) air quality and health. WHO, 2016.
  7. [7] Legal Acts of the Republic of Latvia. Regulations regarding Ambient Air Quality [Online]. [Accessed 21.03.2018]. Available: https://likumi.lv/ta/en/en/id/200712
  8. [8] Rīgas pilsētas gaisa piesārņojuma ar cietajām daļiņām (PM 10) teritoriālo zonu kartes Paskaidrojuma raksts. Riga: Rigas domes MVD, 2014.
  9. [9] CSB. EPM340. Energoresursu patēriņš mājsaimniecībās, ieskaitot patēriņa lauku saimniecībās un citās ekonomiskās aktivitātēs (TJ). PxWeb. [Online]. [Accessed 12.04.2019]. Available: http://data1.csb.gov.lv/pxweb/lv/vide/vide__energetika__energ_pat/EPM340.px/?rxid=a39c3f49-e95e-43e7-b4f0-dce111b48ba1 (in Latvian)
  10. [10] Růžičková J., et al. Comparison of organic compounds in char and soot from the combustion of biomass in boilers of various emission classes. Journal of Environmental Management 2018:236:769–783. doi:10.1016/j.jenvman.2019.02.03810.1016/j.jenvman.2019.02.03830776551
  11. [11] Hupa M., Karlström O., Vainio E. Biomass combustion technology development – It is all about chemical details. Proceedings of the Combustion Institute 2017:36(1):113–134. doi:10.1016/j.proci.2016.06.15210.1016/j.proci.2016.06.152
  12. [12] Saidur R., et al. A review on biomass as a fuel for boilers. Renewable and Sustainable Energy Reviews 2011:15(5):2262–2289. doi:10.1016/j.rser.2011.02.01510.1016/j.rser.2011.02.015
  13. [13] Yongtie C., et al. Modelling of ash deposition in biomass boilers: A review. Energy Procedia 2017:143:623–628. doi:10.1016/j.egypro.2017.12.73710.1016/j.egypro.2017.12.737
  14. [14] Bešenić T., et al. Numerical modelling of emissions of nitrogen oxides in solid fuel combustion. Journal of Environmental Management 2018:215:177–184. doi:10.1016/j.jenvman.2018.03.01410.1016/j.jenvman.2018.03.01429571098
  15. [15] Wolf C., et al. Environmental effects of shifts in a regional heating mix through variations in the utilization of solid biofuels. Journal of Environmental Management 2016:177:177–191. doi:10.1016/j.jenvman.2016.04.01910.1016/j.jenvman.2016.04.01927100330
  16. [16] Klauser F., et al. Emission characterization of modern wood stoves under real-life oriented operating conditions. Atmospheric Environment 2018:192:257–266. doi:10.1016/j.atmosenv.2018.08.02410.1016/j.atmosenv.2018.08.024
  17. [17] Bajcinovci B., Jerliu F. Achieving energy efficiency in accordance with bioclimatic architecture principles. Environmental and Climate Technologies 2016:18(1):54–63. doi:10.1515/rtuect-2016-001310.1515/rtuect-2016-0013
  18. [18] Klavins M., Bisters V., Burlakovs J. Small Scale Gasification Application and Perspectives in Circular Economy. Environmental and Climate Technologies 2018:22(1):42–54. doi:10.2478/rtuect-2018-000310.2478/rtuect-2018-0003
  19. [19] Directive 2009/125/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for the setting of ecodesign requirements for energy-related products. Official Journal of European Union 2009:L 285/10.
  20. [20] Singh R., Shukla A. A review on methods of flue gas cleaning from combustion of biomass. Renewable and Sustainable Energy Reviews 2014:29:854–864. doi:10.1016/j.rser.2013.09.00510.1016/j.rser.2013.09.005
  21. [21] Vigants E., et al. Modelling of Technological Solutions to 4th Generation DH Systems. Environmental and Climate Technologies 2017:20(1):5–23. doi:10.1515/rtuect-2017-000710.1515/rtuect-2017-0007
  22. [22] Gao D., et al. Moisture and latent heat recovery from flue gas by nonporous organic membranes. Journal of Cleaner Production 2019:225:1065–1078. doi:10.1016/j.jclepro.2019.03.32610.1016/j.jclepro.2019.03.326
  23. [23] Cortina M. Flue gas condenser for biomass boilers, 2006.
  24. [24] Jenkins C. F. Condensers. 2011:2(6).10.5594/J18004
  25. [25] Barma M. C., et al. A review on boilers energy use, energy savings, and emissions reductions. Renewable and Sustainable Energy Reviews 2017:79:970–983. doi:10.1016/j.rser.2017.05.18710.1016/j.rser.2017.05.187
  26. [26] Zhao S., et al. Simultaneous heat and water recovery from flue gas by membrane condensation: Experimental investigation. Applied Thermal Engineering 2017:113:843–850. doi:10.1016/j.applthermaleng.2016.11.10110.1016/j.applthermaleng.2016.11.101
  27. [27] Wei M., et al. Experimental investigation on vapor-pump equipped gas boiler for flue gas heat recovery. Appied Thermal Engineering 2019:147:371–379. doi:10.1016/j.applthermaleng.2018.07.06910.1016/j.applthermaleng.2018.07.069
  28. [28] Ramanauskas V., Miliauskas F. The water droplets dynamics and phase transformations in biofuel flue gases flow. International Journal of Heat and Mass Transfer 2019:131:546–557. doi:10.1016/j.ijheatmasstransfer.2018.06.09510.1016/j.ijheatmasstransfer.2018.06.095
  29. [29] Terhan M., Comakli K. Design and economic analysis of a flue gas condenser to recover latent heat from exhaust flue gas. Applied Thermal Engineering 2016:100:1007–1015. doi:10.1016/j.applthermaleng.2015.12.12210.1016/j.applthermaleng.2015.12.122
  30. [30] Vigants G., et al. Efficiency Diagram for District Heating System with Gas Condensing Unit. Energy Procedia 2015:72:119–126. doi:10.1016/j.egypro.2015.06.01710.1016/j.egypro.2015.06.017
  31. [31] Priedniece V., et al. Particulate matter emission decrease possibility from household sector using flue gas condenser – fog unit. Analysis and interpretation of results. Environmental and Climate Technologies 2019:23(1):135–151. doi:10.2478/rtuect-2019-001010.2478/rtuect-2019-0010
  32. [32] Priedniece V., et al. Laboratory research of the flue gas condenser – fog unit. Energy Procedia 2018:147:482–487. doi:10.1016/j.egypro.2018.07.05610.1016/j.egypro.2018.07.056
  33. [33] Priedniece V., et al. Experimental and analytical study of the flue gas condenser – fog unit. Energy Procedia 2019:158:822–827. doi:10.1016/j.egypro.2019.01.21510.1016/j.egypro.2019.01.215
DOI: https://doi.org/10.2478/rtuect-2019-0099 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 333 - 346
Published on: Dec 13, 2019
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Vivita Priedniece, Elvis Kalnins, Vladimirs Kirsanovs, Mikelis Dzikevics, Dagnija Blumberga, Ivars Veidenbergs, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.