[2] Alemany J. M., et al. Accentuating the renewable energy exploitation: Evaluation of flexibility options. International Journal of Electrical Power & Energy Systems 2018:102:131–151. doi:10.1016/j.ijepes.2018.04.02310.1016/j.ijepes.2018.04.023
[3] Deason W. Comparison of 100 % renewable energy system scenarios with a focus on flexibility and cost. Renewable and Sustainable Energy Reviews 2018:82(Part3):3168–3178. doi:10.1016/j.rser.2017.10.02610.1016/j.rser.2017.10.026
[4] Lund P. D., et al. Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renewable and Sustainable Energy Reviews 2015:45:785–807. doi:10.1016/j.rser.2015.01.05710.1016/j.rser.2015.01.057
[5] Holttinen H., et al. The Flexibility Workout: Managing Variable Resources and Assessing the Need for Power System Modification. IEEE Power and Energy Magazine 2013:11(6):53–62. doi:10.1109/MPE.2013.227800010.1109/MPE.2013.2278000
[6] Ropenus S., Godron P., Steigenberger M. A Word on Grids – How Electricity Grids Can Help Integrate Variable Renewable Energy. Agora Energiewende, 2019.
[10] Bussar C., et al. Optimal Allocation and Capacity of Energy Storage Systems in a Future European Power System with 100% Renewable Energy Generation. Energy Procedia 2014:46:40–47. doi:10.1016/j.egypro.2014.01.15610.1016/j.egypro.2014.01.156
[11] Brown T., et al. Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system. Energy 2018:160:720–739. doi:10.1016/j.energy.2018.06.22210.1016/j.energy.2018.06.222
[12] Sandberg E., Kirkerud J. G., Trømborg E., Bolkesjo T. F. Energy system impacts of grid tariff structures for flexible power-to-district heat. Energy 2019:168:772–781. doi:10.1016/j.energy.2018.11.03510.1016/j.energy.2018.11.035
[13] Aduda K. O., et al. Demand side flexibility: Potentials and building performance implications. Sustainable Cities and Society 2016:22:146–163. doi:10.1016/j.scs.2016.02.01110.1016/j.scs.2016.02.011
[16] Anand S., Vrat P., Dahiya R. P. Application of a system dynamics approach for assessment and mitigation of CO2 emissions from the cement industry. Journal of Environmental Management 2006:79(4):383–398. doi:10.1016/j.jenvman.2005.08.00710.1016/j.jenvman.2005.08.00716307842
[17] Bariss U. et al. System Dynamics Modeling of Households’ Electricity Consumption and Cost-Income Ratio: A Case Study of Latvia. Environmental and Climate Technologies 2017:20(1):36–50. doi:10.1515/rtuect-2017-000910.1515/rtuect-2017-0009
[18] Liu P., Lin B., Wu X., Zhou H. Bridging energy performance gaps of green office buildings via more targeted operations management: A system dynamics approach. Journal of Environmental Management 2019:238:64–71. doi:10.1016/j.jenvman.2019.02.11110.1016/j.jenvman.2019.02.11130849599
[19] Bassi A. M. Moving towards integrated policy formulation and evaluation: The green economy model. Environmental and Climate Technologies 2015:16(1):5–19. doi:10.1515/rtuect-2015-000910.1515/rtuect-2015-0009
[20] Chen H., Chang Y. C., Chen K. C. Integrated wetland management: An analysis with group model building based on system dynamics model. Journal of Environmental Management 2014:146:309–319. doi:10.1016/j.jenvman.2014.05.03810.1016/j.jenvman.2014.05.03825194518
[21] Collins R. D. et al. Forest fire management to avoid unintended consequences: A case study of Portugal using system dynamics. Journal of Environmental Management 2013:130:1–9. doi:10.1016/j.jenvman.2013.08.03310.1016/j.jenvman.2013.08.03324036501
[22] Blumberga A., Timma L., Blumberga D. System dynamic model for the accumulation of renewable electricity using Power-to-Gas and Power-to-Liquid concepts. Environmental and Climate Technologies 2015:16(1):54–68. doi:10.1515/rtuect-2015-001210.1515/rtuect-2015-0012