Have a personal or library account? Click to login
Cost Allocation Model for Net-Zero Energy Buildings under Community-Based Reward Penalty Mechanism Cover

Cost Allocation Model for Net-Zero Energy Buildings under Community-Based Reward Penalty Mechanism

Open Access
|Dec 2019

References

  1. [1] Crawley D., Pless S., Torcellini P. Getting to net zero. ASHRAE 2009:51(9):18–25.
  2. [2] Sun Y., Huang G., Xu X., Lai A. C. Building-group-level performance evaluations of net zero energy buildings with non-collaborative controls. Applied Energy 2018:212:565–576. doi:10.1016/j.apenergy.2017.11.07610.1016/j.apenergy.2017.11.076
  3. [3] SHC Task 40-ECBCS Annex 52. [Online]. Available: http://www.iea-shc.org/task40/
  4. [4] The Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings. Official Journal of the European Union 2010:L153:13–35.
  5. [5] Rodriguez-Ubinas E., Montero C., Porteros M., Vega S., Navarro I., Castillo-Cagigal M., Matallanas E., Guttierez A. Passive design strategies and performance of Net Energy Plus Houses. Energy and Buildings 2014:83:10–22. doi:10.1016/j.enbuild.2014.03.07410.1016/j.enbuild.2014.03.074
  6. [6] Biseniece E., Freimanis R., Purvins R., Gravelsins A., Pumpurs A., Blumberga A. Study of Hygrothermal Processes in External Walls with Internal Insulation. Environmental and Climate Technologies 2018:22(1):22–41. doi:10.1515/rtuect-2018-000210.1515/rtuect-2018-0002
  7. [7] Wu W., Skye H. M., Domanski P. A. Selecting HVAC systems to achieve comfortable and cost-effective residential net-zero energy buildings. Applied Energy 2018:212:577–591. doi:10.1016/j.apenergy.2017.12.04610.1016/j.apenergy.2017.12.046
  8. [8] Gordon J. M. Optimal sizing of stand-alone photovoltaic solar power systems. Sollar Cells 1987:20(4):295–313. doi:10.1016/0379-6787(87)90005-610.1016/0379-6787(87)90005-6
  9. [9] Yang H. X., Zhou W., Lu L., Fang Z. H. Optimal sizing method for stand-alone hybrid solar-wind system with LPSP technology by using genetic algorithm. Solar Energy 2008:82(4):354–367. doi:10.1016/j.solener.2007.08.00510.1016/j.solener.2007.08.005
  10. [10] Sutthichaimethee P., Ariyasajjakorn D. Forecast of Carbon Dioxide Emissions from Energy Consumption in Industry Sectors in Thailand. Environmental and Climate Technologies 2018:22(1):107–117. doi:10.2478/rtuect-2018-000710.2478/rtuect-2018-0007
  11. [11] Bariss U., Bazbauers G., Blumberga A., Blumberga D. System Dynamics Modeling of Households’ Electricity Consumption and Cost-Income Ratio: a Case Study of Latvia. Environmental and Climate Technologies 2017:20(1):36–50. doi:10.1515/rtuect-2017-000910.1515/rtuect-2017-0009
  12. [12] Sun Y. Sensitivity analysis of macro-parameters in the system design of net zero energy building. Energy and Buildings 2015:86:464–477. doi:10.1016/j.enbuild.2014.10.03110.1016/j.enbuild.2014.10.031
  13. [13] Zhang S., Sun Y., Cheng Y., Huang P., Oladokun M. O., Lin Z. Response-surface-model-based system sizing for Nearly/Net zero energy buildings under uncertainty. Applied Energy 2018:228:1020–1031. doi:10.1016/j.apenergy.2018.06.15610.1016/j.apenergy.2018.06.156
  14. [14] Hassoun A., Dincer I. Development of power system designs for a net zero energy house. Energy and Buildings 2014:73:120–129. doi:10.1016/j.enbuild.2014.01.02710.1016/j.enbuild.2014.01.027
  15. [15] Zhao Y., Lu Y. H., Yan C. C., Wang S. W. MPC-based optimal scheduling of grid-connected low energy buildings with thermal energy storages. Energy and Buildings 2015:86:415–426. doi:10.1016/j.enbuild.2014.10.01910.1016/j.enbuild.2014.10.019
  16. [16] Lu Y. H., Wang S. W., Sun Y. J., Yan C. C. Optimal scheduling of buildings with energy generation and thermal energy storage under dynamic electricity pricing using mixed-integer nonlinear programming. Applied Energy 2015:147:49–58. doi:10.1016/j.apenergy.2015.02.06010.1016/j.apenergy.2015.02.060
  17. [17] Lu Y., Wang S., Zhao Y., Yan C. Renewable energy system optimization of low/zero energy buildings using single-objective and multi-objective optimization methods. Energy and Buildings 2015:89:61–75. doi:10.1016/j.enbuild.2014.12.03210.1016/j.enbuild.2014.12.032
  18. [18] Abolhosseini Sh., Heshmati A. The main support mechanisms to finance renewable energy development. Renewable and Sustainable Energy Reviews 2014:40:876–885. doi:10.1016/j.rser.2014.08.01310.1016/j.rser.2014.08.013
  19. [19] Bakhshi R., Sadeh J. Economic evaluation of grid-connected photovoltaic systems viability under a new dynamic feed-in tariff scheme: a case study in Iran. Renewable Energy 2018:119:354–364. doi:10.1016/j.renene.2017.11.09310.1016/j.renene.2017.11.093
  20. [20] Fridgen G., Kahlen M., Ketter W., Rieger A., Thimmel M. One rate does not fit all: an empirical analysis of electricity tariffs for residential microgrids. Applied Energy 2018:210:800–814. doi:10.1016/j.apenergy.2017.08.13810.1016/j.apenergy.2017.08.138
  21. [21] Liang-Cheng Y., João F. D. R., Hai X. L. Analysis of feed-in tariff policies for solar photovoltaic in China 2011–2016. Applied Energy 2017:203:496–505. doi:10.1016/j.apenergy.2017.06.03710.1016/j.apenergy.2017.06.037
  22. [22] Ritter M., Deckert L. Site assessment, turbine selection, and local feed-in tariffs through the wind energy index. Applied Energy 2017:185(part2):1087–1099. doi:10.1016/j.apenergy.2015.11.08110.1016/j.apenergy.2015.11.081
  23. [23] Muhammad-Sukki F., Ramirez-Iniguez R., Munir A. B., Yasin S. H. M., Abu-Bakar S. H., McMeekin S. G., Stewart B. G. Revised feed-in tariff for solar photovoltaic in the United Kingdom: a cloudy future ahead? Energy Policy 2013:52:832–838. doi:10.1016/j.enpol.2012.09.06210.1016/j.enpol.2012.09.062
  24. [24] Zhang M. M., Zhou D. Q., Zhou P., Liu G. Q. Optimal feed-in tariff for solar photovoltaic power generation in China: A real options analysis. Energy Policy 2016:97:81–192. doi:10.1016/j.enpol.2016.07.02810.1016/j.enpol.2016.07.028
  25. [25] Lau K. Y., Muhamad N. A., Arief Y. Z., Tan C. W., Yatim A. H. M. Grid-connected photovoltaic systems for Malaysian residential sector: Effects of component costs, feed-in tariffs, and carbon taxes. Energy 2016:102:65–82. doi:10.1016/j.energy.2016.02.06410.1016/j.energy.2016.02.064
  26. [26] Ofgem. Feed-In Tariff (FIT) rates [Online]. Available: https://www.ofgem.gov.uk/environmental-programmes/fit/fit-tariff-rates
  27. [27] Li L., Ye F., Li Y., Chang C. How will the Chinese Certified Emission Reduction scheme save cost for the national carbon trading system? Journal of Environmental Management 2019:244:99–109. doi:10.1016/j.jenvman.2019.04.10010.1016/j.jenvman.2019.04.10031108316
  28. [28] Rui Q., Xu J., Zeng Z. Carbon emission allowance allocation with a mixed mechanism in air passenger transport. Journal of Environmental Management 2017:200:204–216. doi:10.1016/j.jenvman.2017.05.03610.1016/j.jenvman.2017.05.03628578268
  29. [29] Lu Y., Zhang X., Huang Z., Wang D., Zhang Y. Penalty-cost-based design optimization of renewable energy system for net zero energy buildings. Energy Procedia 2018:147:7–14. doi:10.1016/j.egypro.2018.07.02710.1016/j.egypro.2018.07.027
  30. [30] Lu Y., Zhang X. P., Huang Z., Wang D., Zhang Y. Impact of introducing penalty-cost on optimal design of renewable energy systems for net zero energy buildings. Applied Energy 2019:235:106–116. doi:10.1016/j.apenergy.2018.10.11210.1016/j.apenergy.2018.10.112
  31. [31] Moroni S., Alberti V., Antoniucci V., Bisello A. Energy communities in the transition to a low-carbon future: A taxonomical approach and some policy dilemmas. Journal of Environmental Management 2019:236:45–53. doi:10.1016/j.jenvman.2019.01.09510.1016/j.jenvman.2019.01.09530711741
  32. [32] Lu Y., Zhang X. P., Li J., Huang Z., Wang C., Luo L. Design of a reward-penalty cost for the promotion of net-zero energy buildings. Energy 2019:180:36–49. doi:10.1016/j.energy.2019.05.04910.1016/j.energy.2019.05.049
  33. [33] ISSDA. CER Smart Meter Customer Behaviour Trials Data, accessed via the Irish Social Science Data Archive. CER Electricity [Online]. Available: www.ucd.ie/issda
  34. [34] Khan Z. A., Jayaweera D., Alvarez-Alvarado M. S. A novel approach for load profiling in smart power grids using smart meter data. Electric Power Systems Research 2018:165:191–198. doi:10.1016/j.epsr.2018.09.01310.1016/j.epsr.2018.09.013
  35. [35] EE535. Appendix A: Irelands Solar Radiation [Online]. Available: https://sites.google.com/site/ee535test/gerard-cahill/appendix-a-ireland-solar-potential
DOI: https://doi.org/10.2478/rtuect-2019-0096 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 293 - 307
Published on: Dec 13, 2019
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Zhijia Huang, Yang Zhang, Yuehong Lu, Wei Wang, Demin Chen, Changlong Wang, Zafar Khan, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.