Have a personal or library account? Click to login
Mechanical Behaviour of Polylactic Acid Foam as Insulation Under Increasing Temperature Cover

Mechanical Behaviour of Polylactic Acid Foam as Insulation Under Increasing Temperature

By: Lucia Doyle and  Ingo Weidlich  
Open Access
|Dec 2019

References

  1. [1] Lund H., et al. 4th Generation District Heating (4GDH) Integrating smart thermal grids into future sustainable energy systems. Energy 2014:68:1–11. doi:10.1016/j.energy.2014.02.08910.1016/j.energy.2014.02.089
  2. [2] Vigants, E., et al. Modelling of Technological Solutions to 4th Generation DH Systems. Environmental and Climate Technologies 2017:20(1):5–23. doi:10.1515/rtuect-2017-000710.1515/rtuect-2017-0007
  3. [3] IAL Consultants. The European Market for Thermal Insulation Products. Press Release, 2013.
  4. [4] EN 253:2009 District heating pipes – Preinsulated bonded pipe systems for directly buried hot water networks – Pipe assembly of steel service pipe, polyurethane thermal insulation and outer casing of polyethylene.
  5. [5] Dernehl C. U. Health hazards associated with polyurethane foams. Journal of Occupational Medicine 1966:8(2):59–62.
  6. [6] Zapp Jr. J. A. Hazards of Isocyanates in Polyurethane Foam Plastic Production. Archives of Industrial Health 1957:15(4):324–330.
  7. [7] US Department of Labor [Online]. [Accessed 19.11.2018]. Available: https://www.osha.gov/SLTC/isocyanates/
  8. [8] Annex XV Restriction Report – Proposal for a restriction to ECHA by BAuA. Vers 2.1, 2017.
  9. [9] Gong P., et al. Environmentally-friendly Polylactic Acid-based Thermal Insulation Foams Blown with Supercritical CO2. Industrial and Engineering Chemistry Research 2018:57(15):5464–5471. doi:10.1021/acs.iecr.7b0502310.1021/acs.iecr.7b05023
  10. [10] Nofar M., Park C. B. Polylactide Foams. Fundamentals, Manufacturing and Applications. Elsevier, 2018. doi:10.1016/C2017-0-00939-410.1016/C2017-0-00939-4
  11. [11] Reignier J., Gendron R. Champagne M. F. Extrusion Foaming of Poly(Lactic acid) Blown with CO2: Toward 100% Green Material. Cellular Polymers 2007:26(2):83–115. doi:10.1177/02624893070260020210.1177/026248930702600202
  12. [12] Bioplastics Magazine. DYKA premieres world’s first plastic pipe system from renewably-sourced plant-based material [Online]. [Accessed 03.02.2016] Available: https://www.bioplasticsmagazine.com/en/news/meldungen/2016-02-03-DYKA-lauches-bioplastic-pipe-system.php
  13. [13] Parker K., Garancher J. P., Shah S., Fernyhough A. Expanded polylactic acid – an eco-friendly alternative to polystyrene foam. Journal of Cellular Plastics 2011:47(3):233–243. doi:10.1177/0021955X1140483310.1177/0021955X11404833
  14. [14] ISO 11357-2:2013 Plastics – Differential scanning calorimetry (DSC) – Part 2: Determination of glass transition temperature and glass transition step height.
  15. [15] Peelman N., et al. Heat resistance of new biobased polymeric materials, focusing on starch, cellulose, PLA and PHA. Journal of Applied Polymer Science 2015:132(48): 42305. doi:10.1002/app.4230510.1002/app.42305
  16. [16] Auras R., Harte B., Selke, S. An overview of Polylactides as Packaging Materials. Macromolecular Bioscience 2004:4(9):835–864. doi:10.1002/mabi.20040004310.1002/mabi.200400043
  17. [17] Kister G., Cassanas G., Vert M. Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acids)s. Polymer 1998:39(2):267–273. doi:10.1016/S0032-3861(97)00229-210.1016/S0032-3861(97)00229-2
  18. [18] Kister G., et al. Vibrational Analysis of Poly(L-lactic acid). Journal of Ramanan Spectroscopy 1995:26(4):307–311. doi:10.1002/jrs.125026040910.1002/jrs.1250260409
  19. [19] EN ISO 844:2014 Rigid cellular plastics – Determination of compression properties.
  20. [20] Weidlich I. Sensitivity analysis on the axial soil reaction due to temperature induced pipe movements. Presented at the 15th International Symposium on District Heating and Cooling, Seoul, South Korea, 2016.
  21. [21] Garlotta D. A Literature Review of Poly(Lactic Acid). Journal of Polymers and the Environment 2001:9(2):63–84. doi:10.1023/A:102020082243510.1023/A:1020200822435
DOI: https://doi.org/10.2478/rtuect-2019-0090 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 202 - 210
Published on: Dec 13, 2019
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Lucia Doyle, Ingo Weidlich, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.