Have a personal or library account? Click to login
Empirical Model of Cost Reduction in Local DH Systems. Low Temperature Approach Cover

Empirical Model of Cost Reduction in Local DH Systems. Low Temperature Approach

Open Access
|Dec 2019

References

  1. [1] European Commission. The revised energy efficiency directive. [Online]. Available at: https://ec.europa.eu/energy/en/topics/energy-efficiency/energy-efficiency-directive
  2. [2] Buffa S., Cozzini M., D’Antoni M., Baratieri M., Fedrizzi R. 5th generation district heating and cooling systems: a review of existing cases in Europe. Renewable and Sustainable Energy Reviews 2009:104:504–522. doi:10.1016/j.rser.2018.12.05910.1016/j.rser.2018.12.059
  3. [3] Schmidt D. Low Temperature District Heating for Future Energy Systems. Energy Procedia 2018:149:595–604. doi:10.1016/j.egypro.2018.08.22410.1016/j.egypro.2018.08.224
  4. [4] Chicherin S. Low-temperature district heating distributed from transmission-distribution junctions to users: energy and environmental modelling. Energy Procedia 2018:147:382–389. doi:10.1016/j.egypro.2018.07.10710.1016/j.egypro.2018.07.107
  5. [5] Li Y., Xia J., Su Y., Jiang Y. Systematic optimization for the utilization of low-temperature industrial excess heat for district heating. Energy 2018:144:984–991. doi:10.1016/j.energy.2017.12.04810.1016/j.energy.2017.12.048
  6. [6] Arat H., Arslan O. Exergoeconomic analysis of district heating system boosted by the geothermal heat pump. Energy 2017:119:1159–1170. doi:10.1016/j.energy.2016.11.07310.1016/j.energy.2016.11.073
  7. [7] Olsen P. K., Christiansen C. H., Hofmeister M., Svendsen S., Thorsen J. E. Guidelines for low-temperature district heating. EUDP 2010-II project Journal No. 64010-0479, 2014.
  8. [8] Nord N., Nielsen E. K. L., Kauko H., Tereshchenko T. Challenges and potentials for low-temperature district heating implementation in Norway. Energy 2018:151:889–902. doi:10.1016/j.energy.2018.03.09410.1016/j.energy.2018.03.094
  9. [9] Cai H., You S., Wang J., Bindner H. W., Klyapovskiy S. Technical assessment of electric heat boosters in low-temperature district heating based on combined heat and power analysis. Energy 2018:150:938–949. doi:10.1016/j.energy.2018.02.08410.1016/j.energy.2018.02.084
  10. [10] Park B. S., Imran M., Hoon I. Y., Usman M. Thermo-economic optimization of secondary distribution network of low temperature district heating network under local conditions of South Korea. Applied Thermal Engineering 2017:126:117–133. doi:10.1016/j.applthermaleng.2017.07.08010.1016/j.applthermaleng.2017.07.080
  11. [11] Li H., Wang S. J. Challenges in Smart Low-Temperature District Heating Development. Energy Procedia 2014:61:1472–1475. doi:10.1016/j.egypro.2014.12.15010.1016/j.egypro.2014.12.150
  12. [12] Yang X., Svendsen S. Achieving low return temperature for domestic hot water preparation by ultra-low-temperature district heating. Energy Procedia 2017:116:426–437. doi:10.1016/j.egypro.2017.05.09010.1016/j.egypro.2017.05.090
  13. [13] Østergaard D., Svendsen S. Space heating with ultra-low-temperature district heating – a case study of four single-family houses from the 1980s. Energy Procedia 2017:116:226–235. doi:10.1016/j.egypro.2017.05.07010.1016/j.egypro.2017.05.070
  14. [14] Latosov E., Volkova A., Siirde A., Kurnitski J., Thalfeldt M. Methodological Approach to Determining the Effect of Parallel Energy Consumption on District Heating System. Environmental and Climate Technologies 2017:19(1):5–14. doi:10.1515/rtuect-2017-000110.1515/rtuect-2017-0001
  15. [15] Mediastika C. E., Hariyono J. Wall Cladding Effects and Occupants’ Perception of Indoor Temperature of Typical Student Apartments in Surabaya, Indonesia. Environmental and Climate Technologies 2017:20(1):51–66. doi:10.1515/rtuect-2017-001010.1515/rtuect-2017-0010
  16. [16] Albatayneh A., Alterman D., Page A., Moghtaderi B. The Significance of Building Design for the climate. Environmental and Climate Technologies 2018:22(1):165–178. doi:10.2478/rtuect-2018-001110.2478/rtuect-2018-0011
  17. [17] Lund H., et al. The status of 4th generation district heating: Research and results. Energy 2018:164:147–159. doi:10.1016/j.energy.2018.08.20610.1016/j.energy.2018.08.206
  18. [18] Im Y-H., Liu J. Feasibility study on the low temperature district heating and cooling system with bi-lateral heat trades model. Energy 2018:153:988–999. doi:10.1016/j.energy.2018.04.09410.1016/j.energy.2018.04.094
  19. [19] Sameti M., Haghighat F. Optimization of 4th generation distributed district heating system: Design and planning of combined heat and power. Renewable Energy 2019:130:371–387. doi:10.1016/j.renene.2018.06.06810.1016/j.renene.2018.06.068
  20. [20] Tunzi M., Østergaard D. S., Svendsen S., Boukhanouf R., Cooper E. Method to investigate and plan the application of low temperature district heating to existing hydraulic radiator systems in existing buildings. Energy 2016:113:413–421. doi:10.1016/j.energy.2016.07.03310.1016/j.energy.2016.07.033
DOI: https://doi.org/10.2478/rtuect-2019-0089 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 190 - 201
Published on: Dec 13, 2019
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Dagnija Blumberga, Raimonds Gulbis, Linda Ievina, Valdis Vitolins, Girts Vigants, Jevgenijs Selivanovs, Dzintars Jaunzems, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.