[2] Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings. Official Journal of the European Union 2010:L153/13.
[5] Risholt B., Time B., Hestnes A. G. Sustainability assessment of nearly zero energy renovation of dwellings based on energy, economy and home quality indicators. Energy and Buildings 2013:60:217–224. doi:10.1016/j.enbuild.2012.12.01710.1016/j.enbuild.2012.12.017
[9] Weißenberger M., Jensch W., Lang W. The convergence of life cycle assessment and nearly zero-energy buildings: The case of Germany. Energy and Buildings 2014:76:551–557. doi:10.1016/j.enbuild.2014.03.02810.1016/j.enbuild.2014.03.028
[10] Schimschar S., Blok K., Boermans T., Hermelink A. Germany’s path towards nearly zero-energy buildings – Enabling the greenhouse gas mitigation potential in the building stock. Energy Policy 2011:39(6):3346–3360. doi:10.1016/j.enpol.2011.03.02910.1016/j.enpol.2011.03.029
[11] Albatayneh A., Alterman D., Page A., Moghtaderi B. The Significance of Building Design for the Climate. Environmental and Climate Technologies 2018:22(1):165–178. doi:10.2478/rtuect-2018-001110.2478/rtuect-2018-0011
[12] Bot K., et al. Energy performance of buildings with on-site energy generation and storage – An integrated assessment using dynamic simulation. Journal of Building Engineering 2019:24:100769. doi:10.1016/j.jobe.2019.10076910.1016/j.jobe.2019.100769
[13] Kuznik F., et al. A review on recent developments in physisorption thermal energy storage for building applications. Renewable and Sustainable Energy Reviews 2018:94:576–586. doi:10.1016/j.rser.2018.06.03810.1016/j.rser.2018.06.038
[14] Liu J., Chen X., Cao S., Yang H. Overview on hybrid solar photovoltaic-electrical energy storage technologies for power supply to buildings. Energy Conversion and Management 2019:187:103–121. doi:10.1016/j.enconman.2019.02.08010.1016/j.enconman.2019.02.080
[18] Krese G., Koželj R., Butala V., Stritih U. Thermochemical seasonal solar energy storage for heating and cooling of buildings. Energy and Buildings 2018:164:239–253. doi:10.1016/j.enbuild.2017.12.05710.1016/j.enbuild.2017.12.057
[19] Li C., Yu H., Song Y., Liu Z. Novel hybrid microencapsulated phase change materials incorporated wallboard for year-long year energy storage in buildings. Energy Conversion and Management 2019:183:791–802. doi:10.1016/j.enconman.2019.01.03610.1016/j.enconman.2019.01.036
[20] Dzikevics M., Ansone A., Veidenbergs I. Experimental Investigation of Flow Rate Impact on Thermal Accumulation System with PCM. Energy Procedia 2017:128:386–392. doi:10.1016/j.egypro.2017.09.04310.1016/j.egypro.2017.09.043
[21] Schuchardt G. K. Integration of Decentralized Thermal Storages Within District Heating (DH) Networks. Environmental and Climate Technologies 2016:18(1):5–16. doi:10.1515/rtuect-2016-000910.1515/rtuect-2016-0009
[24] Cascone Y., Capozzoli A., Perino M. Optimisation analysis of PCM-enhanced opaque building envelope components for the energy retrofitting of office buildings in Mediterranean climates. Applied Energy 2018:211:929–953. doi:10.1016/j.apenergy.2017.11.08110.1016/j.apenergy.2017.11.081
[28] Lee K. O., Medina M. A., Suna X., Jin X. Thermal performance of phase change materials (PCM)-enhanced cellulose insulation in passive solar residential building walls. Solar Energy 2018:163:113–121. doi:10.1016/j.solener.2018.01.08610.1016/j.solener.2018.01.086
[30] Boussaba L., Foufa A., Makhlouf S., Lefebvre G., Royon L. Elaboration and properties of a composite bio-based PCM for an application in building envelopes. Construction and Building Materials 2018:185:156–165. doi:10.1016/j.conbuildmat.2018.07.09810.1016/j.conbuildmat.2018.07.098
[32] Raja V. A. A., Velraj R. Review on free cooling of buildings using phase change materials. Renewable and Sustainable Energy Reviews 2010:14(1):2819–2828. doi:10.1016/j.rser.2010.07.00410.1016/j.rser.2010.07.004
[34] Al-Maghalseh M., Mahkamov K. Methods of heat transfer intensification in PCM thermal storage systems: Review paper. Renewable and Sustainable Energy Reviews 2018:92:62–94. doi:10.1016/j.rser.2018.04.06410.1016/j.rser.2018.04.064
[35] Choi D. H., Lee J., Hong H., Kang Y. T. Thermal conductivity and heat transfer performance enhancement of phase change materials (PCM) containing carbon additives for heat storage application. International Journal of Refrigeration 2014:42:112–120. doi:10.1016/j.ijrefrig.2014.02.00410.1016/j.ijrefrig.2014.02.004
[36] Fan L., Khodadadi J. M. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review. Renewable and Sustainable Energy Reviews 2011:15(1):24–46. doi:10.1016/j.rser.2010.08.00710.1016/j.rser.2010.08.007
[37] Pigueiras E. L., Luque A. Fresnel lens analysis for solar energy applications. Applied Optics 1981:20(17):2941–2945. doi:10.1364/AO.20.00294110.1364/AO.20.00294120333078
[38] Xie W. T., Dai Y. J., Wang R. Z., Sumathy K. Concentrated solar energy applications using Fresnel lenses: A review. Renewable and Sustainable Energy Reviews 2011:15(6):2588–2606. doi:10.1016/j.rser.2011.03.03110.1016/j.rser.2011.03.031