Have a personal or library account? Click to login
Solar Facade Module for Nearly Zero Energy Building. Optimization Strategies Cover

Solar Facade Module for Nearly Zero Energy Building. Optimization Strategies

Open Access
|Dec 2019

References

  1. [1] IEA. Policy Pathways Brief: Modernising Building Energy Codes 2017. International Energy Agency, 2017.
  2. [2] Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings. Official Journal of the European Union 2010:L153/13.
  3. [3] Lydona G. P., et al. Coupling energy systems with lightweight structures for a net plus energy building. Applied Energy 2017:189:310–326. doi:10.1016/j.apenergy.2016.11.11010.1016/j.apenergy.2016.11.110
  4. [4] Passer A., et al. The impact of future scenarios on building refurbishment strategies towards plus energy buildings. Energy and Buildings 2016:124:153–163. doi:10.1016/j.enbuild.2016.04.00810.1016/j.enbuild.2016.04.008
  5. [5] Risholt B., Time B., Hestnes A. G. Sustainability assessment of nearly zero energy renovation of dwellings based on energy, economy and home quality indicators. Energy and Buildings 2013:60:217–224. doi:10.1016/j.enbuild.2012.12.01710.1016/j.enbuild.2012.12.017
  6. [6] Wiberg A. H., et al. A net zero emission concept analysis of a single-family house. Energy and Buildings 2014:74:101–110. doi:10.1016/j.enbuild.2014.01.03710.1016/j.enbuild.2014.01.037
  7. [7] Attia S., et al. Overview and future challenges of nearly zero energy buildings (NZEB) design in Southern Europe. Energy and Buildings 2017:155:439–458. doi:10.1016/j.enbuild.2017.09.04310.1016/j.enbuild.2017.09.043
  8. [8] Chastas P., et al. Embodied Energy and Nearly Zero Energy Buildings: A Review in Residential Buildings. Procedia Environmental Sciences 2107:38:554–561. doi:10.1016/j.proenv.2017.03.12310.1016/j.proenv.2017.03.123
  9. [9] Weißenberger M., Jensch W., Lang W. The convergence of life cycle assessment and nearly zero-energy buildings: The case of Germany. Energy and Buildings 2014:76:551–557. doi:10.1016/j.enbuild.2014.03.02810.1016/j.enbuild.2014.03.028
  10. [10] Schimschar S., Blok K., Boermans T., Hermelink A. Germany’s path towards nearly zero-energy buildings – Enabling the greenhouse gas mitigation potential in the building stock. Energy Policy 2011:39(6):3346–3360. doi:10.1016/j.enpol.2011.03.02910.1016/j.enpol.2011.03.029
  11. [11] Albatayneh A., Alterman D., Page A., Moghtaderi B. The Significance of Building Design for the Climate. Environmental and Climate Technologies 2018:22(1):165–178. doi:10.2478/rtuect-2018-001110.2478/rtuect-2018-0011
  12. [12] Bot K., et al. Energy performance of buildings with on-site energy generation and storage – An integrated assessment using dynamic simulation. Journal of Building Engineering 2019:24:100769. doi:10.1016/j.jobe.2019.10076910.1016/j.jobe.2019.100769
  13. [13] Kuznik F., et al. A review on recent developments in physisorption thermal energy storage for building applications. Renewable and Sustainable Energy Reviews 2018:94:576–586. doi:10.1016/j.rser.2018.06.03810.1016/j.rser.2018.06.038
  14. [14] Liu J., Chen X., Cao S., Yang H. Overview on hybrid solar photovoltaic-electrical energy storage technologies for power supply to buildings. Energy Conversion and Management 2019:187:103–121. doi:10.1016/j.enconman.2019.02.08010.1016/j.enconman.2019.02.080
  15. [15] Silva G. O., Hendrick P. Pumped hydro energy storage in buildings. Applied Energy 2016:179:1242–1250. doi:10.1016/j.apenergy.2016.07.04610.1016/j.apenergy.2016.07.046
  16. [16] Pero C., et al. Energy storage key performance indicators for building application. Sustainable Cities and Society 2018:40:54–65. doi:10.1016/j.scs.2018.01.05210.1016/j.scs.2018.01.052
  17. [17] Niu J., Tian Z., Lu Y., Zhao H. Flexible dispatch of a building energy system using building thermal storage and battery energy storage. Applied Energy 2019:243:274–287. doi:10.1016/j.apenergy.2019.03.18710.1016/j.apenergy.2019.03.187
  18. [18] Krese G., Koželj R., Butala V., Stritih U. Thermochemical seasonal solar energy storage for heating and cooling of buildings. Energy and Buildings 2018:164:239–253. doi:10.1016/j.enbuild.2017.12.05710.1016/j.enbuild.2017.12.057
  19. [19] Li C., Yu H., Song Y., Liu Z. Novel hybrid microencapsulated phase change materials incorporated wallboard for year-long year energy storage in buildings. Energy Conversion and Management 2019:183:791–802. doi:10.1016/j.enconman.2019.01.03610.1016/j.enconman.2019.01.036
  20. [20] Dzikevics M., Ansone A., Veidenbergs I. Experimental Investigation of Flow Rate Impact on Thermal Accumulation System with PCM. Energy Procedia 2017:128:386–392. doi:10.1016/j.egypro.2017.09.04310.1016/j.egypro.2017.09.043
  21. [21] Schuchardt G. K. Integration of Decentralized Thermal Storages Within District Heating (DH) Networks. Environmental and Climate Technologies 2016:18(1):5–16. doi:10.1515/rtuect-2016-000910.1515/rtuect-2016-0009
  22. [22] Kasaeian A., et al. Experimental studies on the applications of PCMs and nano-PCMs in buildings: A critical review. Energy and Buildings 2017:154:96–112. doi:10.1016/j.enbuild.2017.08.03710.1016/j.enbuild.2017.08.037
  23. [23] Fateh A., et al. Numerical and experimental investigation of an insulation layer with phase change materials (PCMs). Energy and Buildings 2017:153:231–240. doi:10.1016/j.enbuild.2017.08.00710.1016/j.enbuild.2017.08.007
  24. [24] Cascone Y., Capozzoli A., Perino M. Optimisation analysis of PCM-enhanced opaque building envelope components for the energy retrofitting of office buildings in Mediterranean climates. Applied Energy 2018:211:929–953. doi:10.1016/j.apenergy.2017.11.08110.1016/j.apenergy.2017.11.081
  25. [25] Baetens R., Jellea B. P., Gustavsen A. Phase change materials for building applications: A state-of-the-art review. Energy and Buildings 2010:42(9):1361–1368. doi:10.1016/j.enbuild.2010.03.02610.1016/j.enbuild.2010.03.026
  26. [26] Sukontasukkul P., et al. Thermal properties of lightweight concrete incorporating high contents of phase change materials. Construction and Building Materials 2019:207:431–439. doi:10.1016/j.conbuildmat.2019.02.15210.1016/j.conbuildmat.2019.02.152
  27. [27] Ling T.-C., Poon C.-S. Use of phase change materials for thermal energy storage in concrete: An overview. Construction and Building Materials 2013:46:55–62. doi:10.1016/j.conbuildmat.2013.04.03110.1016/j.conbuildmat.2013.04.031
  28. [28] Lee K. O., Medina M. A., Suna X., Jin X. Thermal performance of phase change materials (PCM)-enhanced cellulose insulation in passive solar residential building walls. Solar Energy 2018:163:113–121. doi:10.1016/j.solener.2018.01.08610.1016/j.solener.2018.01.086
  29. [29] Kośny J., et al. Thermal load mitigation and passive cooling in residential attics containing PCM-enhanced insulations. Solar Energy 2014:108:164–177. doi:10.1016/j.solener.2014.05.00710.1016/j.solener.2014.05.007
  30. [30] Boussaba L., Foufa A., Makhlouf S., Lefebvre G., Royon L. Elaboration and properties of a composite bio-based PCM for an application in building envelopes. Construction and Building Materials 2018:185:156–165. doi:10.1016/j.conbuildmat.2018.07.09810.1016/j.conbuildmat.2018.07.098
  31. [31] Gracia A. Dynamic building envelope with PCM for cooling purposes – Proof of concept. Applied Energy 2019:235:1245–1253. doi:10.1016/j.apenergy.2018.11.06110.1016/j.apenergy.2018.11.061
  32. [32] Raja V. A. A., Velraj R. Review on free cooling of buildings using phase change materials. Renewable and Sustainable Energy Reviews 2010:14(1):2819–2828. doi:10.1016/j.rser.2010.07.00410.1016/j.rser.2010.07.004
  33. [33] Osterman E., et al. Review of PCM based cooling technologies for buildings. Energy and Buildings 2012:49:37–49. doi:10.1016/j.enbuild.2012.03.02210.1016/j.enbuild.2012.03.022
  34. [34] Al-Maghalseh M., Mahkamov K. Methods of heat transfer intensification in PCM thermal storage systems: Review paper. Renewable and Sustainable Energy Reviews 2018:92:62–94. doi:10.1016/j.rser.2018.04.06410.1016/j.rser.2018.04.064
  35. [35] Choi D. H., Lee J., Hong H., Kang Y. T. Thermal conductivity and heat transfer performance enhancement of phase change materials (PCM) containing carbon additives for heat storage application. International Journal of Refrigeration 2014:42:112–120. doi:10.1016/j.ijrefrig.2014.02.00410.1016/j.ijrefrig.2014.02.004
  36. [36] Fan L., Khodadadi J. M. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review. Renewable and Sustainable Energy Reviews 2011:15(1):24–46. doi:10.1016/j.rser.2010.08.00710.1016/j.rser.2010.08.007
  37. [37] Pigueiras E. L., Luque A. Fresnel lens analysis for solar energy applications. Applied Optics 1981:20(17):2941–2945. doi:10.1364/AO.20.00294110.1364/AO.20.00294120333078
  38. [38] Xie W. T., Dai Y. J., Wang R. Z., Sumathy K. Concentrated solar energy applications using Fresnel lenses: A review. Renewable and Sustainable Energy Reviews 2011:15(6):2588–2606. doi:10.1016/j.rser.2011.03.03110.1016/j.rser.2011.03.031
  39. [39] Vanaga R., et al. Solar facade module for nearly zero energy building. Energy 2018:157:1025–1034. doi:10.1016/j.energy.2018.04.16710.1016/j.energy.2018.04.167
  40. [40] Mols T., et al. Experimental study of small-scale passive solar wall module with phase change material and Fresnel lens. Energy Procedia 2018:147:467–473. doi:10.1016/j.egypro.2018.07.04810.1016/j.egypro.2018.07.048
  41. [41] Edmund Optics [Online]. [Accessed 2.05.2019]. Available: https://www.edmundoptics.eu/p/5quot-x-5quot-4quot-focal-length-fresnel-lens/6959
  42. [42] Rubitherm Technologies GmbH [Online]. [Accessed 13.05.2019]. Available: https://www.rubitherm.eu/media/products/datasheets/Techdata_-RT21HC_EN_06082018.PDF
DOI: https://doi.org/10.2478/rtuect-2019-0087 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 170 - 181
Published on: Dec 13, 2019
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Raivis Sirmelis, Ruta Vanaga, Ritvars Freimanis, Andra Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.