[8] Pülzl H., Kleinschmit D., Arts B. Bioeconomy – an emerging meta-discourse affecting forest discourses? Scandinavian Journal of Forest Research 2014:29(4):386–393. doi:10.1080/02827581.2014.92004410.1080/02827581.2014.920044
[13] Spatial Foresight, SWECO, ÖIR, t33, Nordregio, Berman Group, Infyde (2017): Bioeconomy development in EU regions. Mapping of EU Member States’/regions’ Research and Innovation plans & Strategies for Smart Specialisation (RIS3) on Bioeconomy for 2014–2020.
[24] Jaunjelgava Regional Council. Jaunjelgava region Development Program Database (Analysis of Existing Situation). Jaunjelgava: Jaunjelgava Regional Council, 2013. (in Latvian)
[26] Geo Consultants. Assessment of the composition of municipal, hazardous and industrial waste in waste management areas, management of certain types of waste and possibilities for waste disposal at landfills. Riga: Geo Consultants, 2017. (in Latvian)
[28] Unkovich M., Baldock J., Forbes M. Variability in harvest index of grain crops and potential significance for carbon accounting: Examples from Australian agriculture. Advances in Agronomy 2010:105(1):173–219. doi:10.1016/S0065-2113(10)05005-410.1016/S0065-2113(10)05005-4
[30] Brunori A., et al. The yield of five buckwheat (Fagopyrum esculentum Moench) varieties grown in Central and Southern Italy. Terra Nova 2005:102:98–102.
[34] Cameron A. D. Managing birch woodlands for the production of quality timber. Forestry: An International Journal of Forest Research 1996:69(4):357–371. doi:10.1093/forestry/69.4.35710.1093/forestry/69.4.357
[35] Arlinger J. Program for estimation of sawn timber, pulpwood and energy wood in felling areas. Uppsala: Skogforsk, Salaspils: Silava, 2005. (in Latvian)
[36] Rusanova J., Markova D., Bazbauers G., Valters K. Waste-to-biomethane Concept Application: A Case Study of Valmiera City in Latvia. Environmental and Climate Technologies 2014:12:10–14.
[37] Rasrendra C. B., et al. Recovery of acetic acid from an aqueous pyrolysis oil phase by reactive extraction using trin-octylamine. Chemical Engineering Journal 2011:176–177:244–252. doi:10.1016/j.cej.2011.08.08210.1016/j.cej.2011.08.082
[38] Polis O., Korica A., Daugavietis M. Biological active substances retained during the spruce tree foliage storage process. Mežzinātne 2009:19:52. (in Latvian)
[39] Daberte I., Barene I., Rubens J., Daugavietis M. Producing and determination of qualitative indices of ordinary pine needles thick extract. European Journal of Pharmaceutical Sciences 2007:32(1)sup:32–33. doi:10.1016/j.ejps.2007.05.06910.1016/j.ejps.2007.05.069
[41] Wu J. P., et al. Cedrus deodara pine needle as a potential source of natural antioxidants: Bioactive constituents and antioxidant activities. Journal of Functional Foods 2015:14:605–612. doi:10.1016/j.jff.2015.02.02310.1016/j.jff.2015.02.023
[42] Hoai N. T., Duc H. V., Thao D. T., Orav A., Raal A. Selectivity of Pinus sylvestris extract and essential oil to estrogen-insensitive breast cancer cells Pinus sylvestris against cancer cells. Pharmacognosy Magazine 2015:11(44):290–295. doi:10.4103/0973-1296.16605210.4103/0973-1296.166052465333926664017
[43] Kelkar V. M., Geils B. W., Becker D. R., Overby S. T., Neary D. G. How to recover more value from small pine trees: Essential oils and resins. Biomass and Bioenergy 2006:30(4):316–320. doi:10.1016/j.biombioe.2005.07.00910.1016/j.biombioe.2005.07.009
[44] Tripathi A. K., Kumari M., Kumar A., Kumar S. Generation of Biogas Using Pine Needles as Substrate in Domestic Biogas Plant. International Journal of Renewable Energy Research 2015:5(3):716–721.
[45] Xiao S., Gao R., Lu Y., Li J., Sun Q. Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles. Carbohydrate Polymers 2015:119:202–209. doi:10.1016/j.carbpol.2014.11.04110.1016/j.carbpol.2014.11.04125563961
[46] Assefi M., Davar F., Hadadzadeh H. Green synthesis of nanosilica by thermal decomposition of pine cones. Advanced Powder Technology 2015:26(6):1583–1589. doi:10.1016/j.apt.2015.09.00410.1016/j.apt.2015.09.004
[47] Sharma N., Mahajan S., Sharma N. Evaluation of different forest wastes of Northern Himalayas. Journal of Agroalimentary Processes and Technologies 2012:18(4):324–335.
[48] Lal P. S., Sharma A., Bist V. Pine Needle - An Evaluation of Pulp and Paper Making Potential. Journal of forest products & industries 2013:2(3):42–47.
[49] Muizniece I., Vilcane L., Blumberga D. Laboratory research of granular heat insulation material from coniferous forestry residue. Agronomy Research 2015:13(2):690–699.
[50] Muizniece I., Blumberga D. Thermal conductivity of heat insulation material made from coniferous needles with potato starch binder. Energy Procedia 2016:95:324–329. doi:10.1016/j.egypro.2016.09.01410.1016/j.egypro.2016.09.014
[52] Dong C., Parsons D., Davies J. I. Tensile strength of pine needles and their feasibility as reinforcement in composite materials. Journal of Materials Science 2014:49(23):8057–8062. doi:10.1007/s10853-014-8513-810.1007/s10853-014-8513-8
[53] Chauhan M., Gupta M., Sungh B., Singh A. K., Gupta V. K. Pine Needle/Isocyanate Composites: Dimensional Stability, Biological Resistance, Flammability, and Thermoacoustic Characteristics. Polymer Composites 2012:33(3):324–335. doi:10.1002/pc.2215110.1002/pc.22151