Have a personal or library account? Click to login
Circular Economy and Bioeconomy Interaction Development as Future for Rural Regions. Case Study of Aizkraukle Region in Latvia Cover

Circular Economy and Bioeconomy Interaction Development as Future for Rural Regions. Case Study of Aizkraukle Region in Latvia

Open Access
|Dec 2019

References

  1. [1] Sanz-Hernández A., Esteban E., Garrido P. Transition to a bioeconomy: Perspectives from social sciences. Journal of Cleaner Production 2019:224:107–119. doi:10.1016/j.jclepro.2019.03.16810.1016/j.jclepro.2019.03.168
  2. [2] Zhao H. Will Resources Be Exhausted? – “Infinite” Supply of Finite Resources. The Economics and Politics of China’s Energy Security Transition 2019:1–27. doi:10.1016/b978-0-12-815152-5.00001-410.1016/b978-0-12-815152-5.00001-4
  3. [3] Yildiz I. Fossil Fuels. Comprehensive Energy Systems 2018:1:521–567. doi:10.1016/B978-0-12-809597-3.00111-510.1016/B978-0-12-809597-3.00111-5
  4. [4] Mullan B., Haqq-Mirsa J. Population growth, energy use, and the implications for the search for extraterrestrial intelligence. Futures 2019:106:4–17. doi:10.1016/j.futures.2018.06.00910.1016/j.futures.2018.06.009
  5. [5] Lewandowski I., et al. Bioeconomy. Springer, 2018. doi:10.1007/978-3-319-68152-810.1007/978-3-319-68152-8
  6. [6] Millar N., McLaughlin E., Borger T. The Circular Economy: Swings and Roundabouts? Ecological Economics 2019:158:11–19. doi:10.1016/j.ecolecon.2018.12.01210.1016/j.ecolecon.2018.12.012
  7. [7] European Commission. The Bioeconomy Strategy, 2012.
  8. [8] Pülzl H., Kleinschmit D., Arts B. Bioeconomy – an emerging meta-discourse affecting forest discourses? Scandinavian Journal of Forest Research 2014:29(4):386–393. doi:10.1080/02827581.2014.92004410.1080/02827581.2014.920044
  9. [9] Global Bioeconomy Summit. Communiqué of the Global Bioeconomy Summit 2015 – Making Bioeconomy Work for Sustainable Development. Berlin, 2015.
  10. [10] Kirchherr J., Reike D., Hekkert M. Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation and Recycling 2017:127:221–232. doi:10.1016/j.resconrec.2017.09.00510.1016/j.resconrec.2017.09.005
  11. [11] Carus M., Dammer L. Industry Report. The Circular Bioeconomy — Concepts, Opportunities, and Limitations. Industrial Biotechnology 2018:14(2):1–9. doi:10.1089/ind.2018.29121.mca10.1089/ind.2018.29121.mca
  12. [12] Lindsey T. C. Sustainable principles: common values for achieving sustainability. Journal of Cleaner Production 2011:19(5):561–565. doi:10.1016/j.jclepro.2010.10.01410.1016/j.jclepro.2010.10.014
  13. [13] Spatial Foresight, SWECO, ÖIR, t33, Nordregio, Berman Group, Infyde (2017): Bioeconomy development in EU regions. Mapping of EU Member States’/regions’ Research and Innovation plans & Strategies for Smart Specialisation (RIS3) on Bioeconomy for 2014–2020.
  14. [14] Valsts zemes dienests. Zemes sadalījums pa lietošanas veidiem, 2018 [Online]. [Accessed: 09.01.2019.]. Available: http://www.vzd.gov.lv/lv/parskati-un-statistika/statistika/statistika-no-kadastra/ZLV/
  15. [15] Valsts meža dienests. Meža statistika [Online]. [Accessed: 08.01.2019.]. Available: http://www.vmd.gov.lv/valstsmeza-dienests/statiskas-lapas/publikacijas-un-statistika/meza-statistikas-cd?nid=1809#jump
  16. [16] Lauksaimniecības datu centra publiskā datu bāze, 2018. gads [Online]. [Accessed: 08.01.2019.]. Available: http://pub.ldc.gov.lv/pub_stat.php?lang=lv
  17. [17] Deklarēto kultūraugu platību apjoms pa novadiem un pagastiem par 2018.gadu [Online]. [Accessed: 08.01.2019.]. Available: http://lad.gov.lv/lv/statistika/platibu-maksajumi/periods-2004-2016/statistikas-dati-par-2018-gadu/
  18. [18] Nodarbinātības valsts aģentūra. Statistika par bezdarbu [Online]. [Accessed: 08.01.2019.]. Available: http://www.nva.gov.lv/index.php?cid=6#bezdarbs
  19. [19] Lursoft statistika. Aktīvo uzņēmumu skaits pa nozarēm [Online]. [Accessed: 08.01.2019.]. Available: https://www.lursoft.lv/lursoft-statistika/Statistika-Latvijas-novadu-pilsetu-griezuma&id=515
  20. [20] Centrālās statistikas pārvalde. Iedzīvotāju skaits republikas pilsētās, novadu pilsētās un novados [Online]. [Accessed: 08.01.2019.]. Available: https://www.csb.gov.lv/lv/statistika/statistikas-temas/iedzivotaji/iedzivotajuskaits/galvenie-raditaji/iedzivotaju-skaits-republikas-pilsetas
  21. [21] Teritorijas attīstības indekss, 2018 [Online]. [Accessed: 09.01.2019.]. Available: http://www.vraa.gov.lv/lv/publikacijas/attistibas_indekss/
  22. [22] Lauku atbalsta dienests. Lauksaimniecībā izmantojamās zemes apsekošana [Online]. [Accessed: 08.01.2019.]. Available: http://www.lad.gov.lv/lv/atbalsta-veidi/noderigi/lauksaimnieciba-izmantojamas-zemes-apsekosana-1/
  23. [23] Nature protection plan for nature reserve “Aizkraukles bog and forests”. Riga: Latvian Fund for Nature, 2011. (in Latvian)
  24. [24] Jaunjelgava Regional Council. Jaunjelgava region Development Program Database (Analysis of Existing Situation). Jaunjelgava: Jaunjelgava Regional Council, 2013. (in Latvian)
  25. [25] Grupa 93. Description of the current situation of Vecumnieki region. Vecumnieki: Grupa 93, 2013. (in Latvian)
  26. [26] Geo Consultants. Assessment of the composition of municipal, hazardous and industrial waste in waste management areas, management of certain types of waste and possibilities for waste disposal at landfills. Riga: Geo Consultants, 2017. (in Latvian)
  27. [27] Latvijas Vides, Ģeoloģijas un Meteoroloģijas Centrs. Summaries of the Single Environment Information System Database “3-Waste” [Online]. [Accessed: 14.01.2019.]. Available: http://parissrv.lvgmc.lv/#viewType=wasteReports&incrementCounter=1 (in Latvian)
  28. [28] Unkovich M., Baldock J., Forbes M. Variability in harvest index of grain crops and potential significance for carbon accounting: Examples from Australian agriculture. Advances in Agronomy 2010:105(1):173–219. doi:10.1016/S0065-2113(10)05005-410.1016/S0065-2113(10)05005-4
  29. [29] Dai J., et al. Harvest index and straw yield of five classes of wheat. Biomass and Bioenergy 2016:85:223–227. doi:10.1016/j.biombioe.2015.12.02310.1016/j.biombioe.2015.12.023
  30. [30] Brunori A., et al. The yield of five buckwheat (Fagopyrum esculentum Moench) varieties grown in Central and Southern Italy. Terra Nova 2005:102:98–102.
  31. [31] Morgan C., et al. Improving harvest index in oilseed rape (Brassica napus) through modifying canopy architectur. Agronomy 2007:3:26–30.
  32. [32] Lauksaimniecības kultūru sējumu platība, kopraža un vidējā ražība. Centrālā statistikas pārvalde, 2018 [Online]. [Accessed: 08.01.2019.]. Available: https://www.csb.gov.lv/lv/statistika/statistikastemas/lauksaimnieciba/augkopiba/tabulas/lag020/lauksaimniecibas-kulturu-sejumu-platiba-kopraza
  33. [33] Rozentals G., et al. What the forest holder should know. Salaspils: Silava, 2017. (in Latvian)
  34. [34] Cameron A. D. Managing birch woodlands for the production of quality timber. Forestry: An International Journal of Forest Research 1996:69(4):357–371. doi:10.1093/forestry/69.4.35710.1093/forestry/69.4.357
  35. [35] Arlinger J. Program for estimation of sawn timber, pulpwood and energy wood in felling areas. Uppsala: Skogforsk, Salaspils: Silava, 2005. (in Latvian)
  36. [36] Rusanova J., Markova D., Bazbauers G., Valters K. Waste-to-biomethane Concept Application: A Case Study of Valmiera City in Latvia. Environmental and Climate Technologies 2014:12:10–14.
  37. [37] Rasrendra C. B., et al. Recovery of acetic acid from an aqueous pyrolysis oil phase by reactive extraction using trin-octylamine. Chemical Engineering Journal 2011:176–177:244–252. doi:10.1016/j.cej.2011.08.08210.1016/j.cej.2011.08.082
  38. [38] Polis O., Korica A., Daugavietis M. Biological active substances retained during the spruce tree foliage storage process. Mežzinātne 2009:19:52. (in Latvian)
  39. [39] Daberte I., Barene I., Rubens J., Daugavietis M. Producing and determination of qualitative indices of ordinary pine needles thick extract. European Journal of Pharmaceutical Sciences 2007:32(1)sup:32–33. doi:10.1016/j.ejps.2007.05.06910.1016/j.ejps.2007.05.069
  40. [40] Zeng W.-C., Zhang Z., Jia L.-R. Antioxidant activity and characterization of antioxidant polysaccharides from pine needle (Cedrus deodara). Carbohydrate Polymers 2014:108:58–64. doi:10.1016/j.carbpol.2014.03.02210.1016/j.carbpol.2014.03.02224751247
  41. [41] Wu J. P., et al. Cedrus deodara pine needle as a potential source of natural antioxidants: Bioactive constituents and antioxidant activities. Journal of Functional Foods 2015:14:605–612. doi:10.1016/j.jff.2015.02.02310.1016/j.jff.2015.02.023
  42. [42] Hoai N. T., Duc H. V., Thao D. T., Orav A., Raal A. Selectivity of Pinus sylvestris extract and essential oil to estrogen-insensitive breast cancer cells Pinus sylvestris against cancer cells. Pharmacognosy Magazine 2015:11(44):290–295. doi:10.4103/0973-1296.16605210.4103/0973-1296.166052465333926664017
  43. [43] Kelkar V. M., Geils B. W., Becker D. R., Overby S. T., Neary D. G. How to recover more value from small pine trees: Essential oils and resins. Biomass and Bioenergy 2006:30(4):316–320. doi:10.1016/j.biombioe.2005.07.00910.1016/j.biombioe.2005.07.009
  44. [44] Tripathi A. K., Kumari M., Kumar A., Kumar S. Generation of Biogas Using Pine Needles as Substrate in Domestic Biogas Plant. International Journal of Renewable Energy Research 2015:5(3):716–721.
  45. [45] Xiao S., Gao R., Lu Y., Li J., Sun Q. Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles. Carbohydrate Polymers 2015:119:202–209. doi:10.1016/j.carbpol.2014.11.04110.1016/j.carbpol.2014.11.04125563961
  46. [46] Assefi M., Davar F., Hadadzadeh H. Green synthesis of nanosilica by thermal decomposition of pine cones. Advanced Powder Technology 2015:26(6):1583–1589. doi:10.1016/j.apt.2015.09.00410.1016/j.apt.2015.09.004
  47. [47] Sharma N., Mahajan S., Sharma N. Evaluation of different forest wastes of Northern Himalayas. Journal of Agroalimentary Processes and Technologies 2012:18(4):324–335.
  48. [48] Lal P. S., Sharma A., Bist V. Pine Needle - An Evaluation of Pulp and Paper Making Potential. Journal of forest products & industries 2013:2(3):42–47.
  49. [49] Muizniece I., Vilcane L., Blumberga D. Laboratory research of granular heat insulation material from coniferous forestry residue. Agronomy Research 2015:13(2):690–699.
  50. [50] Muizniece I., Blumberga D. Thermal conductivity of heat insulation material made from coniferous needles with potato starch binder. Energy Procedia 2016:95:324–329. doi:10.1016/j.egypro.2016.09.01410.1016/j.egypro.2016.09.014
  51. [51] Muizniece I., Blumberga D., Ansone A. Use greenery from coniferous trees for manufacture of heat insulation material. Energy Procedia 2015:72:209–215. doi:10.1016/j.egypro.2015.06.03010.1016/j.egypro.2015.06.030
  52. [52] Dong C., Parsons D., Davies J. I. Tensile strength of pine needles and their feasibility as reinforcement in composite materials. Journal of Materials Science 2014:49(23):8057–8062. doi:10.1007/s10853-014-8513-810.1007/s10853-014-8513-8
  53. [53] Chauhan M., Gupta M., Sungh B., Singh A. K., Gupta V. K. Pine Needle/Isocyanate Composites: Dimensional Stability, Biological Resistance, Flammability, and Thermoacoustic Characteristics. Polymer Composites 2012:33(3):324–335. doi:10.1002/pc.2215110.1002/pc.22151
DOI: https://doi.org/10.2478/rtuect-2019-0084 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 129 - 146
Published on: Dec 13, 2019
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Indra Muizniece, Lauma Zihare, Jelena Pubule, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.