Have a personal or library account? Click to login
CFD Modelling of Biomass Mixing in Anaerobic Digesters of Biogas Plants Cover

CFD Modelling of Biomass Mixing in Anaerobic Digesters of Biogas Plants

Open Access
|Dec 2019

References

  1. [1] Lebranchu A., et al. Impact of shear stress and impeller design on the production of biogas in anaerobic digesters. Bioresource Technology 2017:245(A):1139–1147. doi:10.1016/j.biortech.2017.07.11310.1016/j.biortech.2017.07.11328863993
  2. [2] Naegele H. J., et al. Electric energy consumption of the full scale research biogas plant ‘unterer lindenhof’: results of longterm and full detail measurements. Energies 2012:5(12):5198–5214. doi:10.3390/en512519810.3390/en5125198
  3. [3] Sonnleitner M. Ecological and economic optimization of biogas plants. MPhil Thesis. Leicester: De Montfort University, 2012.
  4. [4] Singh B., Szamosi Z., Simenfalvi Z. State of the art on mixing in an anaerobic digester: a review. Renewable Energy 2019:141:922–936. doi:10.1016/j.renene.2019.04.07210.1016/j.renene.2019.04.072
  5. [5] Kowalczyk A., et al. Different mixing modes for biogas plants using energy crops. Applied Energy 2013:112:465–472. doi:10.1016/j.apenergy.2013.03.06510.1016/j.apenergy.2013.03.065
  6. [6] Wiedemann L., et al. Mixing in Biogas Digesters and Development of an Artificial Substrate for Laboratory-Scale Mixing Optimization. Chemical Engineering & Technology 2017:40:238–247. doi:10.1002/ceat.20160019410.1002/ceat.201600194
  7. [7] Conti F., et al. Mixing of a Model Substrate in a Scale-down Laboratory Digester and Processing with a Computational Fluid Dynamics Model. Proc. of 26th EUBCE-European Biomass Conference and Exhibition, Copenhagen 2018:811–815. doi:10.5071/26thEUBCE2018-2CV.5.3410.5071/26thEUBCE2018-2CV.5.34
  8. [8] Leonzio G. Study of mixing systems and geometric configurations for anaerobic digesters using CFD analysis. Renewable Energy 2018:123:578–589. doi:10.1016/j.renene.2018.02.07110.1016/j.renene.2018.02.071
  9. [9] Bridgeman J. Computational fluid dynamics modeling of sewage sludge moxing in an anaerobic digester. Advances in Engineering Software 2012:44(1):54–62. doi:10.1016/j.advengsoft.2011.05.03710.1016/j.advengsoft.2011.05.037
  10. [10] Dapelo D., Alberini F., Bridgeman J. Euler-Lagrange CFD modelling of unconfined gas mixing in anaerobic digestion. Water Res. 2015:85:497–511. doi:10.1016/j.watres.2015.08.04210.1016/j.watres.2015.08.04226379205
  11. [11] Ding J., et al. CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production. Bioresource Technology 2010:101:7005–7013. doi:10.1016/j.biortech.2010.03.14610.1016/j.biortech.2010.03.14620427177
  12. [12] Keshtkar A., et al. Mathematical modeling of nonideal mixing continuous flow reactors for anaerobic digestion of cattle manure. Bioresource Technology 2003:87(1):113–124. doi:10.1016/S0960-8524(02)00104-910.1016/S0960-8524(02)00104-9
  13. [13] Vesvikar M. S., Al-Dahhan M. Flow pattern visualization in a mimic anaerobic digester using CFD. Biotechnology in Bioengineering 2005:89(6):719–732. doi:10.1002/bit.2038810.1002/bit.2038815685599
  14. [14] Lopez-Jimenez P. A., et al. Application of CFD methods to an anaerobic digester: the case of Ontinyent WWPT, Valencia, Spain. Journal of Water Process Engineering 2015:7:131–140. doi:10.1016/j.jwpe.2015.05.00610.1016/j.jwpe.2015.05.006
  15. [15] Wiedemann L., et al. Modeling Mixing in Anaerobic Digesters with Computational Fluid Dynamics Validated by Experiments. Chemical Engineering & Technology 2018:41:2101–2110. doi:10.1002/ceat.20180008310.1002/ceat.201800083
  16. [16] Conti F., et al. Thermal behaviour of viscosity of aqueous cellulose solutions to emulate biomass in anaerobic digesters. New Journal of Chemistry 2018:42:1099–1104. doi:10.1039/c7nj03199h10.1039/C7NJ03199H
  17. [17] Wiedemann L., et al. Investigation and optimization of the mixing in a biogas digester with a laboratory experiment and an artificial model substrate. Proceeding of 25th EUBCE-European Biomass Conference and Exibition, Stockholm 2017:889–892. doi:10.5071/25thEUBCE2017-2CV.4.1410.5071/25thEUBCE2017-2CV.4.14
  18. [18] Sindall R. C., Bridgeman J., Carliell-marquet C. Velocity gradient as a tool to characterrize the link between mixing and biogas production in anaerobic waste digesters. Water Sci. Technol. 2013:67:2800–2806.10.2166/wst.2013.20623787320
  19. [19] Conti F., et al. Monitoring the mixing of an artificial model substrate in a scale-down laboratory digester. Renewable Energy 2019:132:351–362. doi:10.1016/j.renene.2018.08.01310.1016/j.renene.2018.08.013
  20. [20] Shen F., et al. Improving the mixing performances of rice straw anaerobic digestion for higher biogas production by computational fluid dynamics (CFD) simulation. Applied Biochem. Biotechnol. 2013:171626–642.10.1007/s12010-013-0375-z23873639
  21. [21] Gerogiorgis D. I., Ydstie B. E. Multiphysics CFD modeling for design and simulation of a multiphase chemical reactor. Chemical Engineering Research and Design 2005:83(6):603–610. doi:10.1205/cherd.0436410.1205/cherd.04364
  22. [22] Atta A., Roy S., Nigam K. D. P. A two-phase Eulerian approach using relative permeability concept for modeling of hydrodynamics in trickle-bed reactors at elevated pressure. Chemical Engineering Research and Design 2010:88(3):369–378. doi:10.1016/j.cherd.2009.06.01110.1016/j.cherd.2009.06.011
  23. [23] Celik I. B., et al. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of Fluid Engineering 2008:130(7):0780011–0780014. doi:10.1115/1.296095310.1115/1.2960953
  24. [24] Conti F., et al. Effect of mixing of waste biomass in anaerobic digesters for production of biogas. IOP Conf. Series: Materials Sci. Eng. 2018:446:012011. doi:10.1088/1757-899X/446/1/01201110.1088/1757-899X/446/1/012011
  25. [25] Wu B. CFD investigation of turbulence models for mechanical agitation of non-Newtonian fluids in anaerobic digesters. Water Research 2011:45(5):2082–2094. doi:10.1016/j.watres.2010.12.02010.1016/j.watres.2010.12.020
  26. [26] Alexopoulos A. H., Maggioris D., Kiparissides C. CFD analysis of turbulence non-homogeneity in mixing vessels: a two compartment model. Chemical Engineering Science 2002:57(10):1735–1752. doi:10.1016/S0009-2509(02)00053-210.1016/S0009-2509(02)00053-2
  27. [27] Trentini M., Lorenzon M., Conti F. Biotechnology to investigate the microbial community responsible of biogas production from biomass. Proceeding of 26th EUBCE-European Biomass Conference and Exhibition, Copenhagen, 2018:816–820. doi:10.5071/26thEUBCE2018-2CV.5.3510.5071/26thEUBCE2018-2CV.5.35
  28. [28] Castellan N., Conti F. Molecular biotechnology to improve biofuel production from biomass. Proceeding of 27th EUBCE-European Biomass Conf. and Exhibition, Lisbon, 2019:951–957. doi:10.5071/27thEUBCE2019-2CV.6.2410.5071/27thEUBCE2019-2CV.6.24
  29. [29] Djossou A., Conti F. Mesophilic and thermophilic bacteria in anaerobic digestion process. Proceeding of 27th EUBCE-European Biomass Conf. and Exhibition, Lisbon, 2019:942–945. doi:10.5071/27thEUBCE2019-2CV.6.910.5071/27thEUBCE2019-2CV.6.9
DOI: https://doi.org/10.2478/rtuect-2019-0079 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 57 - 69
Published on: Dec 13, 2019
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Fosca Conti, Abdessamad Saidi, Markus Goldbrunner, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.