Have a personal or library account? Click to login
Potential of Energy Willow Plantations for Biological Reclamation of Soils Polluted by 137Cs and Heavy Metals, and for Control of Nutrients Leaking into Water Systems Cover

Potential of Energy Willow Plantations for Biological Reclamation of Soils Polluted by 137Cs and Heavy Metals, and for Control of Nutrients Leaking into Water Systems

Open Access
|Dec 2019

References

  1. [1] Mosiej J., et al. Biomass Production in Energy Forests. Ecosystem Health and Sustainable Agriculture 3. Uppsala: Uppsala University, 2012:196.
  2. [2] Van T. T. et al. Estimation of Radionuclide Concentrations and Average Annual Committed Effective Dose due to Ingestion for the Population in the Red River Delta, Vietnam. Environmental Management 2019:63(4):444–454. doi:10.1007/s00267-018-1007-810.1007/s00267-018-1007-8647011829453646
  3. [3] Panagos P., et al. Contaminated 447 sites in Europe: review of the current situation based on data collected through a European network. Journal of Environmental and Public Health 2013:ID158764:11. doi:10.1155/2013/15876410.1155/2013/158764369739723843802
  4. [4] Rascio N., Navari-Izzo F. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Science 2011:180(2):169–181. doi:10.1016/j.plantsci.2010.08.01610.1016/j.plantsci.2010.08.01621421358
  5. [5] Van der Ent A., Mulligan D. Multi-element concentrations in plant parts and fluids of Malaysian nickel hyperaccumulator plants and some economic and ecological considerations. Journal of Chemical Ecology 2015:41(4):396–408. doi:10.1007/s10886-015-0573-y10.1007/s10886-015-0573-y25921447
  6. [6] Escarré J., et al. Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. New Phytologist 2000:145(3):429–437. doi:10.1046/j.1469-8137.2000.00599.x10.1046/j.1469-8137.2000.00599.x33862907
  7. [7] Saurabh S., et al. Phytoremediation of metal-contaminated soils by the hyperaccumulator canola (Brassica napus L.) and the use of its biomass for ethanol production. Fuel 2016:183:107–114. doi:10.1016/j.fuel.2016.06.02510.1016/j.fuel.2016.06.025
  8. [8] Bert V., et al. Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae). New Phytologist 2000:146(2):225–233. doi:10.1046/j.1469-8137.2000.00634.x10.1046/j.1469-8137.2000.00634.x33862970
  9. [9] Ashraf M., et al. Influence of lead on growth and nutrient accumulation in canola (Brassica napus L.) cultivars. Journal of Environmental Biology 2011:32(5):659–666.
  10. [10] Nsanganwimana F., et al. Metal accumulation and shoot yield of Miscanthus giganteus growing in contaminated agricultural soils: Insights into agronomic practices. Agriculture, Ecosystems and Environment 2015:213:61–71. doi:10.1016/j.agee.2015.07.02310.1016/j.agee.2015.07.023
  11. [11] Priedniece V., et al. Bioproducts from Potatoes. A Review. Environmental and Climate Technologies 2017:21(1):18–27. doi:10.1515/rtuect-2017-001310.1515/rtuect-2017-0013
  12. [12] Zihare L., Blumberga D. Market Opportunities for Cellulose Products from Combined Renewable Resources. Environmental and Climate Technologies 2017:19(1):33–38. doi:10.1515/rtuect-2017-000310.1515/rtuect-2017-0003
  13. [13] Spalvins K., Blumberga D. Production of Fish Feed and Fish Oil from Waste Biomass Using Microorganisms: Overview of Methods Analyzing Resource Availability. Environmental and Climate Technologies 2018:22(1):149–164. doi:10.2478/rtuect-2018-001010.2478/rtuect-2018-0010
  14. [14] Marmiroli M., et al. Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiology 2011:31(12):1319–1334. doi:10.1093/treephys/tpr09010.1093/treephys/tpr090
  15. [15] Fischer G., et al. Biomass potentials of miscanthus, willow and poplar: results and policy implications for Eastern Europe, Northern and Central Asia. Biomass and Bioenergy 2005:28(2):119–132. doi:10.1016/j.biombioe.2004.08.01310.1016/j.biombioe.2004.08.013
  16. [16] Rosenqvist H., Roos A., Ling E., Hektor B. Willow growers in Sweden. Biomass and Bioenergy 2000:18(2):137–145. doi:10.1016/S0961-9534(99)00081-110.1016/S0961-9534(99)00081-1
  17. [17] Dimitriou J., Aronsson P. Willows for energy and phytoremediation in Sweden. Unasylva 2005:56:47–50.
  18. [18] Buchholz T., Volk T. Profitability of Willow Biomass Crops Affected by Incentive Programs. BioEnergy Research 2013:6(1):53–64. doi:10.1007/s12155-012-9234-y10.1007/s12155-012-9234-y
  19. [19] Schweier J., Becker G. Harvesting of short rotation coppice – harvesting trials with a cut and storage system in Germany. Silva Fennica 2012:46(2):287–299. doi:10.14214/sf.6110.14214/sf.61
  20. [20] Goor F., Davydchuk V., Ledent J. Assessment of the potential of willow SRC plants for energy production in areas contaminated by radionuclide deposits: methodology and perspectives. Biomass and Bioenergy 2001:21(4):225–235. doi:10.1016/S0961-9534(01)00035-610.1016/S0961-9534(01)00035-6
  21. [21] Djelic G., et al. Transfer factors of natural radionuclides and 137Cs from soil to plants used in traditional medicine in central Serbia. Journal of Environmental Radioactivity 2016:158–159:81–88. doi:10.1016/j.jenvrad.2016.03.02810.1016/j.jenvrad.2016.03.02827082759
  22. [22] Vollenweider R. A. Advances in defining critical loading levels for phosphorus in lake eutrophication. Memorie dell’Istituto Italiano di Idrobiologia 1976:53–83.
  23. [23] Munn M., Frey J., Tesoriero A. The Influence of Nutrients and Physical Habitat in Regulating Algal Biomass in Agricultural Streams. Environmental Management 2010:45:603–615. doi:10.1007/s00267-010-9435-010.1007/s00267-010-9435-0284287820143065
  24. [24] Giakoumis T., Voulvoulis N. The Transition of EU Water Policy Towards the Water Framework Directive’s Integrated River Basin Management Paradigm. Environmental Management 2018:62(5):819–831. doi:10.1007/s00267-018-1080-z10.1007/s00267-018-1080-z620882029987347
  25. [25] Environmental Science. Uppsala: The Baltic University Press, 2003:824.
  26. [26] Aronsson P., et al. Spatial variation in above-ground growth in unevenly wastewater-irrigated willow Salix viminalis plantations. Ecological Engineering 2002:19(4):281–287. doi:10.1016/S0925-8574(02)00095-210.1016/S0925-8574(02)00095-2
  27. [27] Elowson S. Willow as a vegetation filter for cleaning of polluted drainage water from agricultural land. Biomass and Bioenergy 1999:16(4):281–290. doi:10.1016/S0961-9534(98)00087-710.1016/S0961-9534(98)00087-7
  28. [28] Enformable Nuclear News. Radionuclide Pollution and Environmental Fate-Impact [Online]. [Accessed 01.02.2019]. Available: http://enformable.com/2011/11/radionuclide-pollution-and-environmental-fate-impact/
  29. [29] Rodzkin A., Ivanykovich V., Pronko S., Kresova E. Willow wood production on radionuclide polluted areas. Proceedings of Natural Sciences, Matica Sprska 2010:119:105–113. doi:10.2298/ZMSPN1019105R10.2298/ZMSPN1019105
  30. [30] Borišev М. Phytoextraction of Cd, Ni, and Pb Using Four Willow Clones (Salix spp.) Polish Journal of Environmental Studies 2009:18:4:553–561.
  31. [31] Caslin B., Finnan J., McCracken A. Willow Varietal Identification Guide. Ireland, 2012.
  32. [32] Oljača R., Rodzkin O., Krstić B., Govedar Z. Fiziologija vrba. Willow Physiology. Laktaši: GrafoMark, 2017.
  33. [33] Rodzkin A., et al. The investigation of morphological characteristics of willow species in different environmental conditions. Matica Srpska Journal 2016:131:63–72. doi:10.2298/ZMSPN1631063R10.2298/ZMSPN1631063
  34. [34] Rosen K., von Fircks Y., Vinichuk M., Sennerby-Forsse L. Accumulation of 137Cs after potassium fertilization in plant organs of Salix viminalis L. and in combusted ash. Biomass and Bioenergy 2011:35(7):2765–2772. doi:10.1016/j.biombioe.2011.03.01110.1016/j.biombioe.2011.03.011
  35. [35] Von Fircks Y., Rosen K. Uptake and distribution of 137Cs and 90Sr in Salix viminalis plants. Journal of Environmental Radioactivity 2002:63(1):1–14. doi:10.1016/S0265-931X(01)00131-X10.1016/S0265-931X(01)00131-X
  36. [36] De Preter P., van Loon L., Maes A., Cremers A. Solid/liquid distribution of radiocaesium in boom clay. A quantitative interpretation. Radiochimica Acta 1991:52/53(2):299–302. doi:10.1524/ract.1991.5253.2.29910.1524/ract.1991.5253.2.299
  37. [37] Rosen K. Effects of potassium fertilization on cesium transfer to grass, barley and vegetables after Chernobyl. The Chernobyl Fallout in Sweden. Stockholm, 1991:305–22.
  38. [38] Smolders E., Kiebooms L., Buysse J., Merckx R. 137Cs uptake in spring wheat (Triticum aestivum L. Cv Tonic) at varying K supply. Plant and Soil 1996:181(2):205–209. doi:10.1007/BF0001205410.1007/BF00012054
  39. [39] Jensen J., et al. The potential of willow for remediation of heavy metal polluted calcareous urban soils. Environmental Pollution 2009:157(3):931–937. doi:10.1016/j.envpol.2008.10.02410.1016/j.envpol.2008.10.02419062141
  40. [40] Šyc M., et al. Willow trees from heavy metals phytoextraction as energy crops. Biomass and Bioenergy 2012:37:106–113. doi:10.1016/j.biombioe.2011.12.02510.1016/j.biombioe.2011.12.025
  41. [41] Vandecasteele B., et al. Effects of willow stands on heavy metal concentrations and top soil properties of infrastructure spoil landfills and dredged sediment-derived sites. Science of the Total Environment 2009:407(20):5289–5297. doi:10.1016/j.scitotenv.2009.06.02210.1016/j.scitotenv.2009.06.02219619889
  42. [42] Mleczek M., et al. Accumulation of selected heavy metals by different genotypes of Salix. Environmental and Experimental Botany 2009:66(2):289–296. doi:10.1016/j.envexpbot.2009.02.01010.1016/j.envexpbot.2009.02.010
  43. [43] Lievens R., Carleer T., Cornelissen J., Yperma C. Fast pyrolysis of heavy metal contaminated willow: Influence of the plant part. Fuel 2009:88(8):1417–1425. doi:10.1016/j.fuel.2009.02.00710.1016/j.fuel.2009.02.007
  44. [44] Ermakov V., et al. Concentrating Metals by Plants of the Genus Salix and Their Importance for Identification of Cd Anomalies. Geochemistry International 2015:53(11):978–990. doi:10.1134/S001670291511002610.1134/S0016702915110026
  45. [45] Laidlaw W., Baker A., Gregory D., Arndt S. Irrigation water quality influences heavy metal uptake by willows in biosolids. Journal of Environmental Management 2015:155:31–39. doi:10.1016/j.jenvman.2015.03.00510.1016/j.jenvman.2015.03.00525770960
  46. [46] Wahsha M., et al. Heavy metals accumulation in willows growing on Spolic Technosols from the abandoned Imperina Valley mine in Italy. Journal of Geochemical Exploration 2012:123:19–24. doi:10.1016/j.gexplo.2012.07.00410.1016/j.gexplo.2012.07.004
  47. [47] Marmiroli M., et al. Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiology 2011:31(12):1319–1334. doi:10.1093/treephys/tpr09010.1093/treephys/tpr09022052656
  48. [48] Yang W., et al. Comparison of manganese tolerance and accumulation among 24 Salix clones in a hydroponic experiment: Application for phytoremediation. Journal of Geochemical Exploration 2015:149:1–7. doi:10.1016/j.gexplo.2014.09.00710.1016/j.gexplo.2014.09.007
  49. [49] Salam M., et al. Effects of contaminated soil on the growth performance of young Salix (Salix schwerinii E. L. Wolf) and the potential for phytoremediation of heavy metals. Journal of Environmental Management 2016:183/3:467–477. doi:10.1016/j.jenvman.2016.08.08210.1016/j.jenvman.2016.08.08227614557
  50. [50] Meers E., et al. Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environmental and Experimental Botany 2007:60(1):57–68. doi:10.1016/j.envexpbot.2006.06.00810.1016/j.envexpbot.2006.06.008
  51. [51] Landberg T., Jensén P., Greger M. Strategies of cadmium and zinc resistance in willow by regulation of net accumulation. Biologia plantarum 2011:55(1):133–140. doi:10.1007/s10535-011-0018-610.1007/s10535-011-0018-6
  52. [52] Wenwen W., et al. Effect of heavy metals combined stress on growth and metals accumulation of three Salix species with different cutting position. International Journal of Phytoremediation 2016:18(8):76–67. doi:10.1080/15226514.2015.113123710.1080/15226514.2015.113123726709734
  53. [53] Rodzkin A., Shkutnik O., Krstić B., Borisev M. Environmental background of fast-growing willow production on different type of soil. Eco-conference Novi Sad 2012:345–353.
  54. [54] Rodzkin A., et al. The Assessment of Cost of Biomass from Post-Mining Peaty Lands for Pellet Fabrication. Environmental and Climate Technologies 2018:22(1):118–131. doi:10.2478/rtuect-2018-000810.2478/rtuect-2018-0008
  55. [55] AILE – Wilwater project LIFE04 ENV/FR/320 – Purification function of SRWC: summary of experimental results [Online]. [Accessed 01.02.2019]. Available: http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=home.showFile&rep=file&fil=LIFE04ENVFR320_PurificationFonctionofSRC.pdf
DOI: https://doi.org/10.2478/rtuect-2019-0078 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 43 - 56
Published on: Dec 13, 2019
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Aleh Rodzkin, Boris Khroustalev, Semjon Kundas, Evgenija Chernenok, Borivoj Krstic, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.