Have a personal or library account? Click to login
Potential of Energy Willow Plantations for Biological Reclamation of Soils Polluted by 137Cs and Heavy Metals, and for Control of Nutrients Leaking into Water Systems
[2] Van T. T. et al. Estimation of Radionuclide Concentrations and Average Annual Committed Effective Dose due to Ingestion for the Population in the Red River Delta, Vietnam. Environmental Management 2019:63(4):444–454. doi:10.1007/s00267-018-1007-810.1007/s00267-018-1007-8647011829453646
[3] Panagos P., et al. Contaminated 447 sites in Europe: review of the current situation based on data collected through a European network. Journal of Environmental and Public Health 2013:ID158764:11. doi:10.1155/2013/15876410.1155/2013/158764369739723843802
[5] Van der Ent A., Mulligan D. Multi-element concentrations in plant parts and fluids of Malaysian nickel hyperaccumulator plants and some economic and ecological considerations. Journal of Chemical Ecology 2015:41(4):396–408. doi:10.1007/s10886-015-0573-y10.1007/s10886-015-0573-y25921447
[6] Escarré J., et al. Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. New Phytologist 2000:145(3):429–437. doi:10.1046/j.1469-8137.2000.00599.x10.1046/j.1469-8137.2000.00599.x33862907
[7] Saurabh S., et al. Phytoremediation of metal-contaminated soils by the hyperaccumulator canola (Brassica napus L.) and the use of its biomass for ethanol production. Fuel 2016:183:107–114. doi:10.1016/j.fuel.2016.06.02510.1016/j.fuel.2016.06.025
[9] Ashraf M., et al. Influence of lead on growth and nutrient accumulation in canola (Brassica napus L.) cultivars. Journal of Environmental Biology 2011:32(5):659–666.
[10] Nsanganwimana F., et al. Metal accumulation and shoot yield of Miscanthus giganteus growing in contaminated agricultural soils: Insights into agronomic practices. Agriculture, Ecosystems and Environment 2015:213:61–71. doi:10.1016/j.agee.2015.07.02310.1016/j.agee.2015.07.023
[12] Zihare L., Blumberga D. Market Opportunities for Cellulose Products from Combined Renewable Resources. Environmental and Climate Technologies 2017:19(1):33–38. doi:10.1515/rtuect-2017-000310.1515/rtuect-2017-0003
[13] Spalvins K., Blumberga D. Production of Fish Feed and Fish Oil from Waste Biomass Using Microorganisms: Overview of Methods Analyzing Resource Availability. Environmental and Climate Technologies 2018:22(1):149–164. doi:10.2478/rtuect-2018-001010.2478/rtuect-2018-0010
[14] Marmiroli M., et al. Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiology 2011:31(12):1319–1334. doi:10.1093/treephys/tpr09010.1093/treephys/tpr090
[15] Fischer G., et al. Biomass potentials of miscanthus, willow and poplar: results and policy implications for Eastern Europe, Northern and Central Asia. Biomass and Bioenergy 2005:28(2):119–132. doi:10.1016/j.biombioe.2004.08.01310.1016/j.biombioe.2004.08.013
[19] Schweier J., Becker G. Harvesting of short rotation coppice – harvesting trials with a cut and storage system in Germany. Silva Fennica 2012:46(2):287–299. doi:10.14214/sf.6110.14214/sf.61
[20] Goor F., Davydchuk V., Ledent J. Assessment of the potential of willow SRC plants for energy production in areas contaminated by radionuclide deposits: methodology and perspectives. Biomass and Bioenergy 2001:21(4):225–235. doi:10.1016/S0961-9534(01)00035-610.1016/S0961-9534(01)00035-6
[21] Djelic G., et al. Transfer factors of natural radionuclides and 137Cs from soil to plants used in traditional medicine in central Serbia. Journal of Environmental Radioactivity 2016:158–159:81–88. doi:10.1016/j.jenvrad.2016.03.02810.1016/j.jenvrad.2016.03.02827082759
[22] Vollenweider R. A. Advances in defining critical loading levels for phosphorus in lake eutrophication. Memorie dell’Istituto Italiano di Idrobiologia 1976:53–83.
[23] Munn M., Frey J., Tesoriero A. The Influence of Nutrients and Physical Habitat in Regulating Algal Biomass in Agricultural Streams. Environmental Management 2010:45:603–615. doi:10.1007/s00267-010-9435-010.1007/s00267-010-9435-0284287820143065
[24] Giakoumis T., Voulvoulis N. The Transition of EU Water Policy Towards the Water Framework Directive’s Integrated River Basin Management Paradigm. Environmental Management 2018:62(5):819–831. doi:10.1007/s00267-018-1080-z10.1007/s00267-018-1080-z620882029987347
[29] Rodzkin A., Ivanykovich V., Pronko S., Kresova E. Willow wood production on radionuclide polluted areas. Proceedings of Natural Sciences, Matica Sprska 2010:119:105–113. doi:10.2298/ZMSPN1019105R10.2298/ZMSPN1019105
[33] Rodzkin A., et al. The investigation of morphological characteristics of willow species in different environmental conditions. Matica Srpska Journal 2016:131:63–72. doi:10.2298/ZMSPN1631063R10.2298/ZMSPN1631063
[34] Rosen K., von Fircks Y., Vinichuk M., Sennerby-Forsse L. Accumulation of 137Cs after potassium fertilization in plant organs of Salix viminalis L. and in combusted ash. Biomass and Bioenergy 2011:35(7):2765–2772. doi:10.1016/j.biombioe.2011.03.01110.1016/j.biombioe.2011.03.011
[36] De Preter P., van Loon L., Maes A., Cremers A. Solid/liquid distribution of radiocaesium in boom clay. A quantitative interpretation. Radiochimica Acta 1991:52/53(2):299–302. doi:10.1524/ract.1991.5253.2.29910.1524/ract.1991.5253.2.299
[37] Rosen K. Effects of potassium fertilization on cesium transfer to grass, barley and vegetables after Chernobyl. The Chernobyl Fallout in Sweden. Stockholm, 1991:305–22.
[38] Smolders E., Kiebooms L., Buysse J., Merckx R. 137Cs uptake in spring wheat (Triticum aestivum L. Cv Tonic) at varying K supply. Plant and Soil 1996:181(2):205–209. doi:10.1007/BF0001205410.1007/BF00012054
[39] Jensen J., et al. The potential of willow for remediation of heavy metal polluted calcareous urban soils. Environmental Pollution 2009:157(3):931–937. doi:10.1016/j.envpol.2008.10.02410.1016/j.envpol.2008.10.02419062141
[41] Vandecasteele B., et al. Effects of willow stands on heavy metal concentrations and top soil properties of infrastructure spoil landfills and dredged sediment-derived sites. Science of the Total Environment 2009:407(20):5289–5297. doi:10.1016/j.scitotenv.2009.06.02210.1016/j.scitotenv.2009.06.02219619889
[43] Lievens R., Carleer T., Cornelissen J., Yperma C. Fast pyrolysis of heavy metal contaminated willow: Influence of the plant part. Fuel 2009:88(8):1417–1425. doi:10.1016/j.fuel.2009.02.00710.1016/j.fuel.2009.02.007
[44] Ermakov V., et al. Concentrating Metals by Plants of the Genus Salix and Their Importance for Identification of Cd Anomalies. Geochemistry International 2015:53(11):978–990. doi:10.1134/S001670291511002610.1134/S0016702915110026
[45] Laidlaw W., Baker A., Gregory D., Arndt S. Irrigation water quality influences heavy metal uptake by willows in biosolids. Journal of Environmental Management 2015:155:31–39. doi:10.1016/j.jenvman.2015.03.00510.1016/j.jenvman.2015.03.00525770960
[46] Wahsha M., et al. Heavy metals accumulation in willows growing on Spolic Technosols from the abandoned Imperina Valley mine in Italy. Journal of Geochemical Exploration 2012:123:19–24. doi:10.1016/j.gexplo.2012.07.00410.1016/j.gexplo.2012.07.004
[47] Marmiroli M., et al. Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiology 2011:31(12):1319–1334. doi:10.1093/treephys/tpr09010.1093/treephys/tpr09022052656
[48] Yang W., et al. Comparison of manganese tolerance and accumulation among 24 Salix clones in a hydroponic experiment: Application for phytoremediation. Journal of Geochemical Exploration 2015:149:1–7. doi:10.1016/j.gexplo.2014.09.00710.1016/j.gexplo.2014.09.007
[49] Salam M., et al. Effects of contaminated soil on the growth performance of young Salix (Salix schwerinii E. L. Wolf) and the potential for phytoremediation of heavy metals. Journal of Environmental Management 2016:183/3:467–477. doi:10.1016/j.jenvman.2016.08.08210.1016/j.jenvman.2016.08.08227614557
[51] Landberg T., Jensén P., Greger M. Strategies of cadmium and zinc resistance in willow by regulation of net accumulation. Biologia plantarum 2011:55(1):133–140. doi:10.1007/s10535-011-0018-610.1007/s10535-011-0018-6
[52] Wenwen W., et al. Effect of heavy metals combined stress on growth and metals accumulation of three Salix species with different cutting position. International Journal of Phytoremediation 2016:18(8):76–67. doi:10.1080/15226514.2015.113123710.1080/15226514.2015.113123726709734
[53] Rodzkin A., Shkutnik O., Krstić B., Borisev M. Environmental background of fast-growing willow production on different type of soil. Eco-conference Novi Sad 2012:345–353.
[54] Rodzkin A., et al. The Assessment of Cost of Biomass from Post-Mining Peaty Lands for Pellet Fabrication. Environmental and Climate Technologies 2018:22(1):118–131. doi:10.2478/rtuect-2018-000810.2478/rtuect-2018-0008