Have a personal or library account? Click to login
Economic Performance of Net-Zero Energy Community under Reward-Penalty Mechanism Considering PV System Reliability Cover

Economic Performance of Net-Zero Energy Community under Reward-Penalty Mechanism Considering PV System Reliability

Open Access
|Dec 2019

References

  1. [1] Sun Y., et al. Building-group-level performance evaluations of net zero energy buildings with non-collaborative controls. Applied Energy 2018:212:565–576. doi:10.1016/j.apenergy.2017.11.07610.1016/j.apenergy.2017.11.076
  2. [2] Albatayneh A., et al. The significance of building design for the climate. Environmental and Climate Technologies 2018:22(1):165–178. doi:10.2478/rtuect-2018-001110.2478/rtuect-2018-0011
  3. [3] Dobson D. W., et al. Sustainable construction: analysis of its costs and benefits. American Journal of Civil Engineering and Architecture 2013:1(2):32–38. doi:10.12691/ajcea-1-2-210.12691/ajcea-1-2-2
  4. [4] Hussin J. M., et al. The way forward in sustainable construction: issues and challenges. International Journal of Advanced and Applied Sciences 2013:2(1):15–24. doi:10.11591/ijaas.v2i1.132110.11591/ijaas.v2i1.1321
  5. [5] Nwokoro I., Onukwube H. N. Sustainable or green construction in Lagos, Nigeria: principles, attributes and framework. Journal of Sustainable Development 2011:4(4):166. doi:10.5539/jsd.v4n4p16610.5539/jsd.v4n4p166
  6. [6] Dania A. A., Larsen G. D., Yao R. Mainstreaming sustainable construction: case studies of an indigenous and multinational firm in Nigeria, 2013.
  7. [7] Miezis M., et al. Climate change and buildings energy efficiency-the key role of residents. Environmental and Climate Technologies 2016:17(1):30–43. doi:10.1515/rtuect-2016-000410.1515/rtuect-2016-0004
  8. [8] Kemmerer F., Thiagarajan S. Incentive systems. Handbook of human performance technology. San Francisco, CA: Jossey-Bass, 1992.
  9. [9] Taylor J. M. Sustainable building practices: legislative and economic incentives, 2011.
  10. [10] Azis S. S. A., Sipan I., Sapri M. The potential of implementing property tax incentives on green building in Malaysia. American Journal of Economy 2013:3(2):63–67.
  11. [11] Yang D., et al. Green financial policies and capital flows. Physica A: Statistical Mechanics and its Applications 2019:522:135–146. doi.org/10.1016/j.physa.2019.01.12610.1016/j.physa.2019.01.126
  12. [12] Choi E. Green on buildings: the effects of municipal policy on green building designations in America’s central cities. J Sustain Real Estate 2010:2(1):1–21.10.1080/10835547.2010.12091802
  13. [13] Olubunmi O. A., Xia P. B., Skitmore M. Green building incentives: A review. Renewable and Sustainable Energy Reviews 2016:59:1611–1621. doi.org/10.1016/j.rser.2016.01.02810.1016/j.rser.2016.01.028
  14. [14] Tinker A., et al. Green construction: contractor motivation and trends in Austin, Texas. Journal of Green Building 2006:1(2):118–34.10.3992/jgb.1.2.118
  15. [15] Ibrahim K. I., Costello S. B., Wilkinson S. Key practice indicators of team integration in construction projects: a review. Team Perform Management 2013:19:132–152. doi:10.1108/TPM-10-2012-003310.1108/TPM-10-2012-0033
  16. [16] Rakha T., Moss T. W., Shin D. A decade analysis of residential LEED buildings market share in the United States: Trends for transitioning sustainable societies. Sustainable Cities and Society 2018:39:568–577. doi:10.1016/j.scs.2018.02.04010.1016/j.scs.2018.02.040
  17. [17] Cease B., et al. Barriers and incentives for sustainable urban development: An analysis of the adoption of LEED-ND projects. Journal of Environmental Management 2019:244:304–312. doi:10.1016/j.jenvman.2019.04.02010.1016/j.jenvman.2019.04.02031128335
  18. [18] Suzer O. A comparative review of environmental concern prioritization: LEED vs other major certification systems. Journal of Environmental Management 2015:154:266–283. doi:10.1016/j.jenvman.2015.02.02910.1016/j.jenvman.2015.02.02925745844
  19. [19] Alam S. S., et al. A survey on renewable energy development in Malaysia: Current status, problems and prospects. Environmental and Climate Technologies 2016:17(1):5–17. doi:10.1515/rtuect-2016-000210.1515/rtuect-2016-0002
  20. [20] Javier Ramírez F., et al. Combining feed-in tariffs and net-metering schemes to balance development in adoption of photovoltaic energy: Comparative economic assessment and policy implications for European countries. Energy Policy 2017:102:440–452. doi:10.1016/j.enpol.2016.12.04010.1016/j.enpol.2016.12.040
  21. [21] Abolhosseini S., Heshmati A. The main support mechanisms to finance renewable energy development. Renewable & Sustainable Energy Reviews 2014:40:876–885. doi:10.1016/j.rser.2014.08.01310.1016/j.rser.2014.08.013
  22. [22] Banovac E., Glavić M, Tešnjak S. Establishing an efficient regulatory mechanism-Prerequisite for successful energy activities regulation. Energy 2009:34(2):178–189. doi:10.1016/j.energy.2008.10.00210.1016/j.energy.2008.10.002
  23. [23] Li L., et al. How will the Chinese Certified Emission Reduction scheme save cost for the national carbon trading system? Journal of Environmental Management 2019:244:99–109. doi:0.1016/j.jenvman.2019.04.10010.1016/j.jenvman.2019.04.10031108316
  24. [24] Primdahl J., et al Current use of impact models for agri-environment schemes and potential for improvements of policy design and assessment. Journal of Environmental Management 2010:91(6):1245–1254. doi:10.1016/j.jenvman.2009.12.01210.1016/j.jenvman.2009.12.01220199842
  25. [25] Lu Y., et al. Penalty-cost-based design optimization of renewable energy system for net zero energy buildings. Energy Procedia 2018:147:7–14. doi:10.1016/j.egypro.2018.07.02710.1016/j.egypro.2018.07.027
  26. [26] Lu Y., et al. Impact of introducing penalty-cost on optimal design of renewable energy systems for net zero energy buildings. Applied Energy 2019:235:106–116. doi:10.1016/j.apenergy.2018.10.11210.1016/j.apenergy.2018.10.112
  27. [27] Billinton R., Allan R. N. Reliability evaluation of engineering systems- 2nd ed. New York: Springer Science, 1992.10.1007/978-1-4899-0685-4
  28. [28] Alvarez-Alvarado M. S., Jayaweera D. Aging Reliability Model for Generation Adequacy. Presented at the 2018 IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), 24–28 June, USA, 2018.10.1109/PMAPS.2018.8440529
  29. [29] Bagen. Reliability and Cost/Worth Evaluation of Generating Systems Utilizing Wind and Solar Energy. Thesis. Canada: University of Saskatchewan, 2005.
  30. [30] Alvarez-Alvarado M. S., Jayaweera D. Reliability Model for a Static Var Compensator. Presented at the 2017 IEEE Ecuador Technical Chapters Meeting (ETCM), 16–20 Oct, Ecuador, 2007.10.1109/ETCM.2017.8247445
  31. [31] Alvarez-Alvarado M. S., Jayaweera D. A New Approach for Reliability Assessment of a Static Var Compensator Integrated Smart Grid. Presented at the 2018 IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), 22-26 Jun 2018.10.1109/PMAPS.2018.8440239
  32. [32] ISSDA, CER Smart Meter Customer Behaviour Trials Data, CER Electricity [Online]. [Accessed 01.03.2012]. Available: www.ucd.ie/issda
  33. [33] Khan Z. A., Jayaweera D., Alvarez-Alvarado M. S. A novel approach for load profiling in smart power grids using smart meter data. Electric Power Systems Research 2018:165:191–198. doi:10.1016/j.epsr.2018.09.01310.1016/j.epsr.2018.09.013
  34. [34] Appendix A: Irelands Solar Radiation [Online]. Available: https://sites.google.com/site/ee535test/gerard-cahill/appendix-a-ireland-solar-potential.
DOI: https://doi.org/10.2478/rtuect-2019-0077 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 26 - 42
Published on: Dec 13, 2019
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Yuehong Lu, Zafar Khan, Hasan Gunduz, Wei Wang, Jianing Li, Xiao-Ping Zhang, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.