[1] Andersson B., Andersson R., Hakansson L. Computational Fluid Dynamics for Engineers. New York: Cambridge University Press Publ., 2012.10.1017/CBO9781139093590
[2] Zhang H.-D., Zheng X-P. Characteristics of hazardous chemical accidents in China: A statistical investigation. Journal of Loss Prevention in the Process Industries 2012:25(4):686–693. doi:10.1016/j.jlp.2012.03.00110.1016/j.jlp.2012.03.001
[3] Hughes Ph., Ferrett E. Introduction to Health and Safety at Work: The Handbook for the NEBOSH National General Certificate. Oxford: Butterworth-Heinemann, 2011.10.4324/9780080959375
[4] Nolan, D. Handbook of Fire and Explosion Protection Engineering Principles: for Oil, Gas, Chemical and Related Facilities 4th ed. Gulf Professional Publishing, 2018.
[5] Hallenbeck W. H., Flowers R. E. Risk analysis for worker exposure to benzene. Environmental Management 1992:16(3):415–420. doi:10.1007/BF0240008110.1007/BF02400081
[6] Chrostowski P. C., Pearsall L. J., Shaw C. Risk assessment as a management tool for inactive hazardous materials disposal sites. Environmental Management 1985:9(5):433–441. doi:10.1007/BF0186634210.1007/BF01866342
[8] Assael M. J., Kakosimos K. E. Fires, Explosions, and Toxic Gas Dispersions: Effects Calculation and Risk Analysis. New York: CRC Press Publ., 2010. doi:10.1201/978143982676810.1201/9781439826768
[9] Huyen D. T. T., Tram L. T. B. Development of a Procedure for Evaluating the Impacts of the Accidental Emission of Hazardous Chemicals, Case Study in Ho Chi Minh City, Vietnam. Environmental Management 2019:63(4):486–494. doi:10.1007/s00267-017-0979-010.1007/s00267-017-0979-029302714
[10] Blumberga A., Timma L., Blumberga D. System Dynamic Model for the Accumulation of Renewable Electricity using Power-to-Gas and Power-to-Liquid Concepts. Environmental and Climate Technologies 2015:16(1):54–68. doi:10.1515/rtuect-2015-001210.1515/rtuect-2015-0012
[11] Vigants E., et al. Modelling of Technological Solutions to 4th Generation DH Systems. Environmental and Climate Technologies 2017:20(1):5–23. doi:10.1515/rtuect-2017-000710.1515/rtuect-2017-0007
[12] Bariss U., et al. System Dynamics Modeling of Households’ Electricity Consumption and Cost-Income Ratio: a Case Study of Latvia. Environmental and Climate Technologies 2017:20(1):36–50. doi:10.1515/rtuect-2017-000910.1515/rtuect-2017-0009
[14] Granovskiy E. A., et al. Numerical Modeling of Hydrogen Release, Mixture and Dispersion in Atmosphere. Proceedings of 1-st International Conference on Hydrogen Safety, Pisa, Italy, 2005. [Online]. [Accessed 24.02.2019]. Available: http://conference.ing.unipi.it/ichs2005/Papers/110021.pdf
[15] Skob Y. A., Ugryumov M. L., Granovskiy E. A. Mathematical modeling of hydrogen explosion consequences at fueling station. Proceedings of 7th International Conference on Hydrogen Safety, Hamburg, Germany, 2017. [Online]. [Accessed 12.03.2019]. Available: https://hysafe.info/wp-content/uploads/2017_papers/159.pdf
[16] Kim C. H., et al. Operational Atmospheric Modeling System CARIS for Effective Emergency Response Associated with Hazardous Chemical Releases in Korea. Environmental Management 2004:33(3):345–354. doi:10.1007/s00267-003-0030-510.1007/s00267-003-0030-5
[17] Markiewicz T. A review of mathematical models for the atmospheric dispersion of heavy gases. Part I. A classification of models. Ecological Chemistry and Engineering S 2012:19(3):297–314. doi:10.2478/v10216-011-0022-y10.2478/v10216-011-0022-y
[21] Folch A., Costa A., Hankin R. K. S. Twodee-2: A shallow layer model for dense gas dispersion on complex topography. Computers & Geosciences 2009:35(3):667–674. doi:10.1016/j.cageo.2007.12.01710.1016/j.cageo.2007.12.017
[23] Burns D. S., et al. A simplified chemistry module for atmospheric transport and dispersion models: Proof-of-concept using SCIPUFF. Atmospheric Environment 2012:56:212–221. doi:10.1016/j.atmosenv.2012.03.06710.1016/j.atmosenv.2012.03.067
[24] Merah A., Noureddine A. Reactive pollutants dispersion modeling in a street Canyon. International Journal of Applied Mechanics and Engineering 2019:24(1):91–103. doi:10.2478/ijame-2019-000610.2478/ijame-2019-0006
[26] Lipatnikov A. N., Sabelnikov V. A., Poludnenko A. Y. Assessment of a transport equation for mean reaction rate using DNS data obtained from highly unsteady premixed turbulent flames. International Journal Heat and Mass Transfer 2019:134:398–404. doi:10.1016/j.ijheatmasstransfer.2019.01.04310.1016/j.ijheatmasstransfer.2019.01.043
[27] Galeev A. D., Starovoitova E. V., Ponikarov S. I. Numerical simulation of the formation of a toxic cloud on outpouring ejection of liquefied chlorine to the atmosphere. Journal of Engineering Physics and Thermophysics 2013:86(1):219–228. doi:10.1007/s10891-013-0823-110.1007/s10891-013-0823-1
[30] Sutthichaimethee P., Ariyasajjakorn D. Forecast of Carbon Dioxide Emissions from Energy Consumption in Industry Sectors in Thailand. Environmental and Climate Technologies 2018:22(1):107–117. doi:10.2478/rtuect-2018-000710.2478/rtuect-2018-0007
[31] Belyaev N. N., Koptilaya O. V. Kompiuternoe modelirovanie zagriazneniia okruzhaiushchei sredy pri razlive ammiaka. Dnipropetrovsk. Ekologia prirodokoristuvannia – Ecology and nature management, Transactions of IPPE NAN Ukraine. 2002:2:158–162. (in Russian)
[32] Slisane D., Blumberga D. Assessment of Roadside Particulate Emission Mitigation Possibilities. Environmental and Climate Technologies 2013:12(1):4–9. doi:10.2478/rtuect-2013-000910.2478/rtuect-2013-0009
[33] Matsak V. G., Khotsianov L. K. Gigienicheskoe znachenie skorosti ispareniia i davleniia para toksicheskikh veshchestv primeniaemykh v proizvodstve. Moscow: Medgiz, 1959. (in Russian)
[34] RD-03-26-2007. Metodicheskiye ukazaniya po otsenke posledstviy avariynykh vybrosov opasnykh veshchestv. (Methodological guidelines for the assessment of the consequences of accidental releases of hazardous substances.) Moscow: STC “Industrial safety”, 2008:27(6):122.
[36] Skob Y. A., Ugryumov M. L. Kompyuterna interaktyvna systema inzhenernoho analizu ta prohnozu “Toxic Spill Safety” dlya otsinky bezpeky pid chas avariynoho prolyttya toksychnoho zridzhenoho hazu. (Computer Interactive System “Toxic Spill Safety” of Engineering Analysis and Forecast for Safety Assessment of Accidental Spillage of Toxic Liquefied Gas). Official bulletin of copyrights 2017:45:212.