Have a personal or library account? Click to login
Numerical Evaluation of Probability of Harmful Impact Caused by Toxic Spill Emergencies Cover

Numerical Evaluation of Probability of Harmful Impact Caused by Toxic Spill Emergencies

Open Access
|Dec 2019

References

  1. [1] Andersson B., Andersson R., Hakansson L. Computational Fluid Dynamics for Engineers. New York: Cambridge University Press Publ., 2012.10.1017/CBO9781139093590
  2. [2] Zhang H.-D., Zheng X-P. Characteristics of hazardous chemical accidents in China: A statistical investigation. Journal of Loss Prevention in the Process Industries 2012:25(4):686–693. doi:10.1016/j.jlp.2012.03.00110.1016/j.jlp.2012.03.001
  3. [3] Hughes Ph., Ferrett E. Introduction to Health and Safety at Work: The Handbook for the NEBOSH National General Certificate. Oxford: Butterworth-Heinemann, 2011.10.4324/9780080959375
  4. [4] Nolan, D. Handbook of Fire and Explosion Protection Engineering Principles: for Oil, Gas, Chemical and Related Facilities 4th ed. Gulf Professional Publishing, 2018.
  5. [5] Hallenbeck W. H., Flowers R. E. Risk analysis for worker exposure to benzene. Environmental Management 1992:16(3):415–420. doi:10.1007/BF0240008110.1007/BF02400081
  6. [6] Chrostowski P. C., Pearsall L. J., Shaw C. Risk assessment as a management tool for inactive hazardous materials disposal sites. Environmental Management 1985:9(5):433–441. doi:10.1007/BF0186634210.1007/BF01866342
  7. [7] Levin S. A., et al. New perspectives in ecotoxicology. Environmental Management 1984:8(5):375–442. doi:10.1007/BF0187180710.1007/BF01871807
  8. [8] Assael M. J., Kakosimos K. E. Fires, Explosions, and Toxic Gas Dispersions: Effects Calculation and Risk Analysis. New York: CRC Press Publ., 2010. doi:10.1201/978143982676810.1201/9781439826768
  9. [9] Huyen D. T. T., Tram L. T. B. Development of a Procedure for Evaluating the Impacts of the Accidental Emission of Hazardous Chemicals, Case Study in Ho Chi Minh City, Vietnam. Environmental Management 2019:63(4):486–494. doi:10.1007/s00267-017-0979-010.1007/s00267-017-0979-029302714
  10. [10] Blumberga A., Timma L., Blumberga D. System Dynamic Model for the Accumulation of Renewable Electricity using Power-to-Gas and Power-to-Liquid Concepts. Environmental and Climate Technologies 2015:16(1):54–68. doi:10.1515/rtuect-2015-001210.1515/rtuect-2015-0012
  11. [11] Vigants E., et al. Modelling of Technological Solutions to 4th Generation DH Systems. Environmental and Climate Technologies 2017:20(1):5–23. doi:10.1515/rtuect-2017-000710.1515/rtuect-2017-0007
  12. [12] Bariss U., et al. System Dynamics Modeling of Households’ Electricity Consumption and Cost-Income Ratio: a Case Study of Latvia. Environmental and Climate Technologies 2017:20(1):36–50. doi:10.1515/rtuect-2017-000910.1515/rtuect-2017-0009
  13. [13] Truong S. C. H., et al. Accidental benzene release risk assessment in an urban area using an atmospheric dispersion model. Atmospheric Environment 2016:144:146–159. doi:10.1016/j.atmosenv.2016.08.07510.1016/j.atmosenv.2016.08.075
  14. [14] Granovskiy E. A., et al. Numerical Modeling of Hydrogen Release, Mixture and Dispersion in Atmosphere. Proceedings of 1-st International Conference on Hydrogen Safety, Pisa, Italy, 2005. [Online]. [Accessed 24.02.2019]. Available: http://conference.ing.unipi.it/ichs2005/Papers/110021.pdf
  15. [15] Skob Y. A., Ugryumov M. L., Granovskiy E. A. Mathematical modeling of hydrogen explosion consequences at fueling station. Proceedings of 7th International Conference on Hydrogen Safety, Hamburg, Germany, 2017. [Online]. [Accessed 12.03.2019]. Available: https://hysafe.info/wp-content/uploads/2017_papers/159.pdf
  16. [16] Kim C. H., et al. Operational Atmospheric Modeling System CARIS for Effective Emergency Response Associated with Hazardous Chemical Releases in Korea. Environmental Management 2004:33(3):345–354. doi:10.1007/s00267-003-0030-510.1007/s00267-003-0030-5
  17. [17] Markiewicz T. A review of mathematical models for the atmospheric dispersion of heavy gases. Part I. A classification of models. Ecological Chemistry and Engineering S 2012:19(3):297–314. doi:10.2478/v10216-011-0022-y10.2478/v10216-011-0022-y
  18. [18] Rogulski M. Indoor PM10 concentration measurements using low-cost monitors in selected locations in Warsaw. Energy Procedia 2018:147:137–144. doi:10.1016/j.egypro.2018.07.04310.1016/j.egypro.2018.07.043
  19. [19] Barisa A., Rosa M. Scenario analysis of CO2 emission reduction potential in road transport sector in Latvia. Energy Procedia 2018:147:86–95. doi:10.1016/j.egypro.2018.07.03610.1016/j.egypro.2018.07.036
  20. [20] Puttock J. S., et al. Dispersion models and hydrogen fluoride predictions. Journal of Loss Prevention in the Process Industries 1991:4(1):16–28. doi:10.1016/0950-4230(91)80003-D10.1016/0950-4230(91)80003-
  21. [21] Folch A., Costa A., Hankin R. K. S. Twodee-2: A shallow layer model for dense gas dispersion on complex topography. Computers & Geosciences 2009:35(3):667–674. doi:10.1016/j.cageo.2007.12.01710.1016/j.cageo.2007.12.017
  22. [22] Kopka P., Wawrzynczak A. Framework for stochastic identification of atmospheric contamination source in an urban area. Atmospheric Environment 2018:195:63–77. doi:10.1016/j.atmosenv.2018.09.03510.1016/j.atmosenv.2018.09.035
  23. [23] Burns D. S., et al. A simplified chemistry module for atmospheric transport and dispersion models: Proof-of-concept using SCIPUFF. Atmospheric Environment 2012:56:212–221. doi:10.1016/j.atmosenv.2012.03.06710.1016/j.atmosenv.2012.03.067
  24. [24] Merah A., Noureddine A. Reactive pollutants dispersion modeling in a street Canyon. International Journal of Applied Mechanics and Engineering 2019:24(1):91–103. doi:10.2478/ijame-2019-000610.2478/ijame-2019-0006
  25. [25] Arvidson S., Davidson L., Peng S.-H. Interface methods for grey-area mitigation in turbulence-resolving hybrid RANS-LES. International Journal Heat and Fluid Flow 2018:73:236–257. doi:10.1016/j.ijheatfluidflow.2018.08.00510.1016/j.ijheatfluidflow.2018.08.005
  26. [26] Lipatnikov A. N., Sabelnikov V. A., Poludnenko A. Y. Assessment of a transport equation for mean reaction rate using DNS data obtained from highly unsteady premixed turbulent flames. International Journal Heat and Mass Transfer 2019:134:398–404. doi:10.1016/j.ijheatmasstransfer.2019.01.04310.1016/j.ijheatmasstransfer.2019.01.043
  27. [27] Galeev A. D., Starovoitova E. V., Ponikarov S. I. Numerical simulation of the formation of a toxic cloud on outpouring ejection of liquefied chlorine to the atmosphere. Journal of Engineering Physics and Thermophysics 2013:86(1):219–228. doi:10.1007/s10891-013-0823-110.1007/s10891-013-0823-1
  28. [28] Engeln-Müllges G., Niederdrenk K., Wodicka R. Numerik-Algorithmen: Verfahren, Beispiele, Anwendungen. Berlin: Xpert.press Publ., 2010. (in German) doi:10.1007/978-3-642-13473-910.1007/978-3-642-13473-9
  29. [29] Snegirev A. Y., Frolov A. S. The large eddy simulation of a turbulent diffusion flame. High Temperature 2011:49:690–704. doi:10.1134/S0018151X1104020110.1134/S0018151X11040201
  30. [30] Sutthichaimethee P., Ariyasajjakorn D. Forecast of Carbon Dioxide Emissions from Energy Consumption in Industry Sectors in Thailand. Environmental and Climate Technologies 2018:22(1):107–117. doi:10.2478/rtuect-2018-000710.2478/rtuect-2018-0007
  31. [31] Belyaev N. N., Koptilaya O. V. Kompiuternoe modelirovanie zagriazneniia okruzhaiushchei sredy pri razlive ammiaka. Dnipropetrovsk. Ekologia prirodokoristuvannia – Ecology and nature management, Transactions of IPPE NAN Ukraine. 2002:2:158–162. (in Russian)
  32. [32] Slisane D., Blumberga D. Assessment of Roadside Particulate Emission Mitigation Possibilities. Environmental and Climate Technologies 2013:12(1):4–9. doi:10.2478/rtuect-2013-000910.2478/rtuect-2013-0009
  33. [33] Matsak V. G., Khotsianov L. K. Gigienicheskoe znachenie skorosti ispareniia i davleniia para toksicheskikh veshchestv primeniaemykh v proizvodstve. Moscow: Medgiz, 1959. (in Russian)
  34. [34] RD-03-26-2007. Metodicheskiye ukazaniya po otsenke posledstviy avariynykh vybrosov opasnykh veshchestv. (Methodological guidelines for the assessment of the consequences of accidental releases of hazardous substances.) Moscow: STC “Industrial safety”, 2008:27(6):122.
  35. [35] Knott G. D. Interpolating Cubic Splines. Boston: Birkhäuser Publ., 2012.
  36. [36] Skob Y. A., Ugryumov M. L. Kompyuterna interaktyvna systema inzhenernoho analizu ta prohnozu “Toxic Spill Safety” dlya otsinky bezpeky pid chas avariynoho prolyttya toksychnoho zridzhenoho hazu. (Computer Interactive System “Toxic Spill Safety” of Engineering Analysis and Forecast for Safety Assessment of Accidental Spillage of Toxic Liquefied Gas). Official bulletin of copyrights 2017:45:212.
DOI: https://doi.org/10.2478/rtuect-2019-0075 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 1 - 14
Published on: Dec 13, 2019
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Yurii Skob, Mykhaylo Ugryumov, Eduard Granovskiy, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.