[1] Spalvins K., Ivanovs K., Blumberga D. Single cell protein production from waste biomass: review of various agricultural by-products. Agronomy Research 2018:16(S2):1493–1508. doi:10.15159/ar.18.129
[2] Johnson D. T., Taconi K. A. The glycerin glut: options for value-added conversion of crude glycerol resulting from biodiesel production. Environmental Progress 2007:26(4):338–348. doi:10.1002/ep.1022510.1002/ep.10225
[4] Browne J., Nizami A. S., Thamsiriroj T., Murphy J. D. Assessing the cost of biofuel production with increasing penetration of the transport fuel market: A case study of gaseous biomethane in Ireland. Renewable and Sustainable Energy Reviews 2011:15(9):4537–4547. doi:10.1016/j.rser.2011.07.09810.1016/j.rser.2011.07.098
[5] Werpy T., Petersen G. Top Value Added Chemicals from Biomass. Volume I – Results of Screening for Potential Candidates from Sugars and Synthesis Gas. United States Department of Energy, 2004.10.2172/15008859
[6] FitzPatric. M., Champagne P., Cunningham M. F., Whitney R. A. A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products. Bioresource Technology 2010:101(23):8915–8922. doi:10.1016/j.biortech.2010.06.12510.1016/j.biortech.2010.06.12520667714
[7] Spalvins K., Zihare L., Blumberga D. Single cell protein production from waste biomass: comparison of various industrial by-products. Energy Procedia 2018:147:409–418. doi:10.1016/j.egypro.2018.07.11110.1016/j.egypro.2018.07.111
[8] El-Bakry M., et al. From Wastes to High Value Added Products: Novel Aspects of SSF in the Production of Enzymes. Journal Critical Reviews in Environmental Science and Technology 2015:45(18). doi:10.1080/10643389.2015.101042310.1080/10643389.2015.1010423
[9] Pinzi S., Garcia I. L., J. Lopez-Gimenez F. J., DeCastro M. D. L., Dorado G., Dorado M. P. The ideal vegetable oil-based biodiesel composition: a review of social, economical and technical implications. Energy and Fuels 2009:23(5):2325–2341. doi:10.1021/ef801098a10.1021/ef801098a
[10] Ratledge C. Microbial oils: an introductory overview of current status and future prospects. OCL 2013:20(6):D602. doi:10.1051/ocl/201302910.1051/ocl/2013029
[11] Finco A. M. O., Mamani L. D. G., Carvalho J. C., Pereira G. V. M., Soccol V. T., Soccol C. R. Technological trends and market perspectives for production of microbial oils rich in omega-3. Critical Reviews in Biotechnology 2016:37(5):1–16. doi:10.1080/07388551.2016.121322110.1080/07388551.2016.121322127653190
[12] Huang C., Chen X., Xiong L., Chen X., Ma L., Chen Y. Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnology Advances 2013:31(2):129–139. doi:10.1016/j.biotechadv.2012.08.01010.1016/j.biotechadv.2012.08.01022960618
[13] Spalvins K., Blumberga D. Single cell oil production from waste biomass: review of applicable agricultural by-products. Agronomy Research 2019:17(3):833–849. doi:10.15159/ar.19.039
[14] Zuta C. P., Simpson B. K., Chan H. M., Phillips L. Concentrating PUFA from mackerel processing waste. Journal of the American Oil Chemists Society 2003:80(9):933–936. doi:10.1007/s11746-003-0799-510.1007/s11746-003-0799-5
[15] Boyle N. R, Morgan J. A. Computation of metabolic fluxes and efficiencies for biological carbon dioxide fixation. Metabolic Engineering 2011:13(2):150–158. doi:10.1016/j.ymben.2011.01.00510.1016/j.ymben.2011.01.005
[17] Spalvins K., Blumberga D. Production of fish feed and fish oil from waste biomass using microorganisms: overview of methods analyzing resource availability. Environmental and Climate Technologies 2018:22(1):149–154. doi:10.2478/rtuect-2018-001010.2478/rtuect-2018-0010
[19] Leiva-Candia D. E., Pinzi S., Redel-macías M. D., Koutinas A., Webb C., Dorado M. P. The potential for agro-industrial waste utilization using oleaginous yeast for the production of biodiesel. Fuel 2014:123:33–42. doi:10.1016/j.fuel.2014.01.05410.1016/j.fuel.2014.01.054
[20] Jin M., Slininger P. J., Dien B. S., Waghmode S., Moser B. R., Orjuela A., Sousa L. C., Balan V. Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges. Trends in Biotechnology 2015:33(1):43–54. doi:10.1016/j.tibtech.2014.11.00510.1016/j.tibtech.2014.11.005
[21] Patel A., Arora N., Sartaj K., Pruthi V., Pruthi P. A. Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomasses. Renewable and Sustainable Energy Reviews 2016:62:836–855. doi:10.1016/j.rser.2016.05.01410.1016/j.rser.2016.05.014
[22] Qin L., Liu L., Zeng A., Wei D. Bioresource Technology From low-cost substrates to Single Cell Oils synthesized by oleaginous yeasts. Bioresource Technology 2017:245:1507–1519. doi:10.1016/j.biortech.2017.05.16310.1016/j.biortech.2017.05.163
[24] Deeba F., Pruthi V., Negi Y. S. Converting paper mill sludge into neutral lipids by oleaginous yeast Cryptococcus vishniaccii for biodiesel production. Bioresource Technology 2015:213:96–102. doi:10.1016/j.biortech.2016.02.10510.1016/j.biortech.2016.02.10526965670
[25] Zhou W., Gong Z., Zhang L., Liu Y., Yan J., Zhao M. Feasibility of lipid production from waste paper by the oleaginous yeast Cryptococcus curvatus. BioResources 2017:12(3):5249–5263. doi:10.15376/biores.12.3.5249-526310.15376/biores.12.3.5249-5263
[26] Annamalai N., Sivakumar N., Oleskowicz-Popiel P. Enhanced production of microbial lipids from waste office paper by the oleaginous yeast Cryptococcus curvatus. Fuel 2018:217:420–426. doi:10.1016/j.fuel.2017.12.10810.1016/j.fuel.2017.12.108
[27] Angerbauer C., Siebenhofer M., Mittelbach M., Guebitz G. M. Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresource Technology 2008:99(8):3051–3056. doi:10.1016/j.biortech.2007.06.04510.1016/j.biortech.2007.06.04517719773
[28] Li J., Liu R., Chang G., Li X., Chang M., Liu Y., Jin Q., Wang X. A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources. Bioresource Technology 2015:177C:51–57. doi:10.1016/j.biortech.2014.11.04610.1016/j.biortech.2014.11.04625479393
[29] Patil K. P, Gogate P. R. Improved synthesis of docosahexaenoic acid (DHA) using Schizochytrium limacinum SR21 and sustainable media. The Chemical Engineering Journal 2015:268:187–196. doi:10.1016/j.cej.2015.01.05010.1016/j.cej.2015.01.050
[30] Ethier S., Woisard K., Vaughan D., Wen Z. Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresource Technology 2010:102(1):88–93. doi:10.1016/j.biortech.2010.05.02110.1016/j.biortech.2010.05.02120570140
[31] Meesters P. A. E. P., Huijberts G. N. M., Eggink G. High-cell-density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Applied Microbiology Biotechnology 1996:45(5):575–579. doi:10.1007/s00253005073110.1007/s002530050731
[32] Chang G., Gao N., Tian G., Wu Q., Chang M., Wang X. Improvement of docosahexaenoic acid production on glycerol by Schizochytrium sp. S31 with constantly high oxygen transfer coefficient. Bioresource Technology 2013:142:400–406. doi:10.1016/j.biortech.2013.04.10710.1016/j.biortech.2013.04.10723747449
[33] Munch G., Sestric R., Sparling R., Levin D. B., Cicek N. Lipid production in the under-characterized oleaginous yeasts, Rhodosporidium babjevae and Rhodosporidium diobovatum, from biodiesel-derived waste glycerol. Bioresource Technology 2015:185:49–55. doi:10.1016/j.biortech.2015.02.05110.1016/j.biortech.2015.02.05125747878
[34] Kitcha S., Cheirsilp B. Screening of oleaginous yeasts and optimization for lipid production using crude glycerol as a carbon source. Energy Procedia 2011:9:274–282. doi:10.1016/j.egypro.2011.09.02910.1016/j.egypro.2011.09.029
[35] Sestric R., Munch G., Cicek N., Sparling R., Levin D. B. Growth and neutral lipid synthesis by Yarrowia lipolytica on various carbon substrates under nutrient-sufficient and nutrient-limited conditions. Bioresource Technology 2014:164:41–46. doi:10.1016/j.biortech.2014.04.01610.1016/j.biortech.2014.04.016
[36] Papanikolaou S., Aggelis G. Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica. Lipid Technology 2009:21(4):83–87. doi:10.1002/lite.20090001710.1002/lite.200900017
[37] Poli J. S., da Silva M. A. N., Siqueira E. P., Pasa V. M. D., Rosa C. A., Valente P. Microbial lipid produced by Yarrowia lipolytica QU21 using industrial waste: a potential feedstock for biodiesel production. Bioresource Technology 2014:161:320–326. doi:10.1016/j.biortech.2014.03.08310.1016/j.biortech.2014.03.083
[39] Gouda M. K., Omar S. H., Aouad L. M. Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World Journal of Microbiology and Biotechnology 2008:24(9):1703–1711. doi:10.1007/s11274-008-9664-z10.1007/s11274-008-9664-z
[40] Peng W. F., Huang C., Chen X. F., Xiong L., Chen X., Chen Y., Ma L. Microbial conversion of wastewater from butanol fermentation to microbial oil by oleaginous yeast Trichosporon dermatis. Renewable Energy 2013:55:31–34. doi:10.1016/j.renene.2012.12.01710.1016/j.renene.2012.12.017
[41] Huang X., Shen Y., Luo H., Liu J., Liu J. Enhancement of extracellular lipid production by oleaginous yeast through preculture and sequencing batch culture strategy with acetic acid. Bioresource Technology 2018:247:395–401. doi:10.1016/j.biortech.2017.09.09610.1016/j.biortech.2017.09.096
[42] Minowa T., Yokoyama S., Kishimoto M. Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 1995:74(12):1735–1738. doi:10.1016/0016-2361(95)80001-X10.1016/0016-2361(95)80001-X
[43] Liang Y., Sarkany N., Cui Y. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett. 2009:31(7):1043–1049. doi:10.1007/s10529-009-9975-710.1007/s10529-009-9975-719322523
[46] Kuokkanen T., Nurmesniemi H., Pöykiö R., Kujala K., Kaakinen J., Kuokkanen M. Chemical and leaching properties of paper mill sludge. Chemical Speciation and Bioavailability 2008:20(2):111–122. doi:10.3184/095422908X32448010.3184/095422908X324480
[47] Scott G. M., Abubakr S., Smith A. Sludge characteristics and disposal alternatives for the pulp and paper industry. Proceedings International Environmental Conference, Atlanta, GA, TAPPI PRESS, 1995.
[48] Trevelyan W. E., Forrest R. S., Harrison J. S. Determination of yeast carbohydrates with the anthrone reagent. Nature 1952:170:626–627. doi:10.1038/170626a010.1038/170626a013002392
[49] Ivarson K. C., Morita H. Single-cell protein by acid-tolerant fungus Scytalidium acidophilum from acid hydrolysates of waste paper. Applied and Environmental Microbiology 1982:43(3):643–647.10.1128/aem.43.3.643-647.198224188816345970
[50] Vishniac H. S., Hempfling W. P. Cryptooccus vishniacii sp. nov., an Antarctic Yeast. International Journal of Systematic Bacteriology 1979:29(2):153–158. doi:10.1099/00207713-29-2-15310.1099/00207713-29-2-153
[51] Fytili D., Zabaniotou A. Utilization of sewage sludge in EU application of old and new methods – A review. Renewable and Sustainable Energy Reviews 2008:12(1):116–140. doi:10.1016/j.rser.2006.05.01410.1016/j.rser.2006.05.014
[52] Commission of European Communities. Council Directive 91/271/EEC of 21 March 1991 concerning urban waste-water treatment (amended by the 98/15/EC of 27 February 1998).
[61] Ciriminna R., Della Pina C., Rossi M., Pagliaro M. Understanding the glycerol market. European Journal of Lipid Science and Technology 2014:116(10):1432–1439. doi:10.1002/ejlt.20140022910.1002/ejlt.201400229
[62] Dobrowolski A., Mituła P., Rymowicz W., Mirończuk A. M. Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica. Bioresource Technology 2016:207:237–243. doi:10.1016/j.biortech.2016.02.03910.1016/j.biortech.2016.02.039
[63] Kong P. S., Aroua M. K., Ashri Wan Daud W. M. Conversion of crude and pure glycerol into derivatives: A feasibility evaluation. Renewable and Sustainable Energy Reviews 2016:63:533–555. doi:10.1016/j.rser.2016.05.05410.1016/j.rser.2016.05.054
[64] Werz P. D. L., Kainz J., Rieger B. Thermo- and pH-Responsive Nanogel Particles Bearing Secondary Amine Functionalities for Reversible Carbon Dioxide Capture and Release. Macromolecules 2015:48(18):6433–6439. doi:10.1021/acs.macromol.5b0136710.1021/acs.macromol.5b01367
[66] Simkin A. J., McAusland L., Headland L. R., Lawson T., Raines C. A. Multigene manipulation of photosynthetic carbon assimilation increases CO2 fixation and biomass yield in tobacco. Journal of Experimental Botany 2015:66(13):4075–4090. doi:10.1093/jxb/erv20410.1093/jxb/erv204
[67] Spalvins K., Ivanovs K., Blumberga D. Single cell protein production from waste biomass : comparison of various agricultural by-products. Agronomy research 2017:16(2):1493–1508. doi:10.15159/ar.18.129
[69] Park J. B. K., Craggs R. J. Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition. Water Science and Technology 2010:5:633–640. doi:10.2166/wst.2010.95110.2166/wst.2010.951
[70] Worrell E., Bernstein L., Roy J., Price L., Harnisch J. Industrial energy efficiency and climate change mitigation. Energy Efficience 2009:2(2):109–123. doi:10.1007/s12053-008-9032-810.1007/s12053-008-9032-8
[71] Egenhofer C., et al. Final report for a study on composition and drivers of energy prices and costs in energy intensive industries: the case of the chemical industry – ammonia. Sensemaking Symp. 2014:1–33.
[73] Saad H. Ammar. Cultivation of Microalgae Chlorella vulgaris in airlift photobioreactor for Biomass Production using commercial NPK nutrients. Al-Khwarizmi Eng. J. 2016:12(1):90–99.
[74] Roleda M. Y., Slocombe S. P., Leakey R. J. G., Day J. G., Bell E. M., Stanley M. S. Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresource Technology 2013:129:439–449. doi:10.1016/j.biortech.2012.11.04310.1016/j.biortech.2012.11.043
[75] Li Y., Horsman M., Wang B., Wu N., Lan C. Q. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiology and Biotechnology 2008:81(4):629–636. doi:10.1007/s00253-008-1681-110.1007/s00253-008-1681-118795284
[76] Blair M. F., Kokabian B., Gude V. G. Light and growth medium effect on Chlorella vulgaris biomass production. Journal of Environtal Chemical Engineering 2014:2(1):665–674. doi:10.1016/j.jece.2013.11.00510.1016/j.jece.2013.11.005
[77] Pirt S. J., Lee Y.-K., Richmond A., Pirt M. W. The photosynthetic efficiency of Chlorella biomass growth with reference to solar energy utilisation Journal of Chemical Technology and Biotechnology 1980:30(1):25–34. doi:10.1002/jctb.50330010510.1002/jctb.503300105
[80] Hammouda O., Gaber A., Abdel-Raouf N. Microalgae and waste-water treatment. Ecotoxicology and Environmental Safety 1994:31(3):205–210. doi:10.1006/eesa.1995.106410.1006/eesa.1995.10647498057
[81] de la Noüe J., Laliberté G., Proulx D. Algae and waste water. Journal of Applied Phycology 1992:4(3):247–254. doi:10.1007/BF0216121010.1007/BF02161210
[82] Liang Y., Sarkany N., Cui Y. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters 2009:31(7):1043–1049. doi:10.1007/s10529-009-9975-710.1007/s10529-009-9975-719322523
[83] Moraine R., Shelef G., Meydan A., Levi A. Algal single cell protein from wastewater treatment and renovation process. Biotechnology and Bioengineering 1979:21(7):1191–1207. doi:10.1002/bit.26021070910.1002/bit.260210709
[84] Guaya D., Hermassi M., Valderrama C., Farran A., Cortina J. L. Recovery of ammonium and phosphate from treated urban wastewater by using potassium clinoptilolite impregnated hydrated metal oxides as N-P-K fertilizer. Journal of Environmental Chemical Engineering 2016:4(3):3519–3526. doi:10.1016/j.jece.2016.07.03110.1016/j.jece.2016.07.031
[85] Collet P., Hélias Arnaud A., Lardon L., Ras M., Goy R. A., Steyer J. P. Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource Technology 2011:102(1):207–214. doi:10.1016/j.biortech.2010.06.15410.1016/j.biortech.2010.06.15420674343
[86] Yakushev A., Newton E.V. Redox Interfaces In Marine Waters. Chemical Structure of Pelagic Redox Interfaces. Handbook of Environmetnal Chemistry 2013:22:1–12. doi:10.1007/698_2012_16710.1007/698_2012_167
[87] Jorquera O., Kiperstok A., Sales E. A., Embiruçu M., Ghirardi M. L. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresource Technology 2010:101(4):1406–1413. doi:10.1016/j.biortech.2009.09.03810.1016/j.biortech.2009.09.038
[88] Rajeshwari K. V., Balakrishnan M., Kansal A., Lata K., Kishore V. V. N. State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. Renewable and Sustainable Energy Reviews 2000:4(2):135–156. doi:10.1016/S1364-0321(99)00014-310.1016/S1364-0321(99)00014-3