Have a personal or library account? Click to login

Life Cycle Assessment of Different Low-Temperature District Heating Development Scenarios: A Case Study of Municipality in Latvia

Open Access
|Nov 2019

References

  1. [1] Mazhar A. R., Liu S., Shukla A. A state of art review on the district heating systems. Renewable and Sustainable Energy Reviews 2018:96:420–439. doi:10.1016/j.rser.2018.08.00510.1016/j.rser.2018.08.005
  2. [2] Thellufsen J. Z., Nielsen S., Lund H. Implementing cleaner heating solutions towards a future low-carbon scenario in Ireland. Journal of Cleaner Production 2019:214:377–388. doi:10.1016/j.jclepro.2018.12.30310.1016/j.jclepro.2018.12.303
  3. [3] Nord N., Kristine E., Nielsen L., Kauko H. Challenges and potentials for low-temperature district heating implementation in Norway. Energy 2018:151:889–902. doi:10.1016/j.energy.2018.03.09410.1016/j.energy.2018.03.094
  4. [4] Schmidt D. Low Temperature District Heating for Future Energy Systems. Energy Procedia 2018:149:595–604. doi:10.1016/j.egypro.2018.08.22410.1016/j.egypro.2018.08.224
  5. [5] Winterscheid C. Integration of solar thermal systems in existing district heating systems. Energy 2017:137:579–585 doi:10.1016/j.energy.2017.04.15910.1016/j.energy.2017.04.159
  6. [6] Connolly D., et al. Heat roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system. Energy Policy 2014:65:475–489. doi:10.1016/j.enpol.2013.10.03510.1016/j.enpol.2013.10.035
  7. [7] Rämä M., Sipilä K. Transition to low temperature distribution in existing systems. Energy Procedia 2017:116:58–68. doi:10.1016/j.egypro.2017.05.05510.1016/j.egypro.2017.05.055
  8. [8] Li H., Wang S. J. Challenges in smart Low-temperature district heating development. Energy Procedia 2014:61:1472–1475. doi:10.1016/j.egypro.2014.12.15010.1016/j.egypro.2014.12.150
  9. [9] Imran M., Usman M., Im Y. H., Park B. S. The feasibility analysis for the concept of low temperature district heating network with cascade utilization of heat between networks. Energy Procedia 2017:116:4–12. doi:10.1016/j.egypro.2017.05.05010.1016/j.egypro.2017.05.050
  10. [10] Schuchardt K. Integration of decentralized thermal storages within district heating networks. Environmental and Climate Technologies 2016:18:5–16. doi:10.1515/rtuect-2016-000910.1515/rtuect-2016-0009
  11. [11] Gadd H., Werner S. Achieving low return temperatures from district heating substations. Applied Energy 2014:136:59–67. doi:10.1016/j.apenergy.2014.09.02210.1016/j.apenergy.2014.09.022
  12. [12] Dorotić H., Pukšec T., Duić N. Multi-objective optimization of district heating and cooling systems for a one-year time horizon. Energy 2019:169:319–328. doi:10.1016/j.energy.2018.11.14910.1016/j.energy.2018.11.149
  13. [13] Volkova A., et al. Small low-temperature district heating network development prospects. Energy 2019:178:714–722. doi:10.1016/j.energy.2019.04.08310.1016/j.energy.2019.04.083
  14. [14] Kouhia M., Laukkanen T., Holmberg H., Ahtila P. Evaluation of design objectives in district heating system design. Energy 2019:167:369–378. doi:10.1016/j.energy.2018.10.17010.1016/j.energy.2018.10.170
  15. [15] Olsthoorn D., Haghighat F., Mirzaei P. A. Integration of storage and renewable energy into district heating systems: A review of modelling and optimization. Solar Energy 2016:136:49–64. doi:10.1016/j.solener.2016.06.05410.1016/j.solener.2016.06.054
  16. [16] Fachinger F., Drewnick F., Gieré R., Borrmann S. Communal biofuel burning for district heating: Emissions and immissions from medium-sized (0.4 and 1.5 MW) facilities. Atmospheric Environment 2017:181:177–185. doi:10.1016/j.atmosenv.2018.03.01410.1016/j.atmosenv.2018.03.014
  17. [17] Caputo P., Ferla G., Ferrari S. Evaluation of environmental and energy effects of biomass district heating by a wide survey based on operational conditions in Italy. Energy 2019:174:1210–1218. doi:10.1016/j.energy.2019.03.07310.1016/j.energy.2019.03.073
  18. [18] Morosuk T., Tsatsaronis G. Advanced exergy-based methods used to understand and improve energy-conversion systems. Energy 2019:169:238–246. doi:10.1016/j.energy.2018.11.12310.1016/j.energy.2018.11.123
  19. [19] Gong M., Werner S. Exergy analysis of network temperature levels in Swedish and Danish district heating systems. Renewable Energy 2015:84:106–113. doi:10.1016/j.renene.2015.06.00110.1016/j.renene.2015.06.001
  20. [20] Baldvinsson I., Nakata T. A feasibility and performance assessment of a low temperature district heating system – A North Japanese case study. Energy 2016:95:155–174. doi:10.1016/j.energy.2015.11.05710.1016/j.energy.2015.11.057
  21. [21] Yazici H. Energy and exergy based evaluation of the renovated Afyon geothermal district heating system. Energy and Buildings 2016:127:794–804. doi:10.1016/j.enbuild.2016.06.03610.1016/j.enbuild.2016.06.036
  22. [22] Laukkanen T. P., Kohl T., Järvinen M. P., Ahtila P. Primary exergy efficiency-effect of system efficiency environment to benefits of exergy savings. Energy and Buildings 2016:124:248–254. doi:10.1016/j.enbuild.2015.09.03510.1016/j.enbuild.2015.09.035
  23. [23] Andrić I., et al. On the performance of district heating systems in urban environment: an emergy approach. Journal of Cleaner production 2017:142:109–120. doi:10.1016/j.jclepro.2016.05.12410.1016/j.jclepro.2016.05.124
  24. [24] Raugei M., Rugani B., Benetto E., Ingwersen W. W. Integrating emergy into LCA: Potential added value and lingering obstacles. Ecological Modelling 214:271:4–9. doi:10.1016/j.ecolmodel.2012.11.02510.1016/j.ecolmodel.2012.11.025
  25. [25] Coss S., Verda V., Le-Corre O. Multi-objective optimization of district heating network model and assessment of demand side measures using the load deviation index. Journal of Cleaner Production 2018:182:338–351. doi:10.1016/j.jclepro.2018.02.08310.1016/j.jclepro.2018.02.083
  26. [26] Patterson M., McDonald G., Hardy D. Is there more in common than we think? Convergence of ecological footprinting, emergy analysis, life cycle assessment and other methods of environmental accounting. Ecological Modelling 2017:362:19–36. doi:10.1016/j.ecolmodel.2017.07.02210.1016/j.ecolmodel.2017.07.022
  27. [27] Oliver-Solà J., Gabarrell X., Rieradevall J. Environmental impacts of the infrastructure for district heating in urban neighbourhoods. Energy Policy 2009:37(11):4711–4719. doi:10.1016/j.enpol.2009.06.02510.1016/j.enpol.2009.06.025
  28. [28] Nitkiewicz A., Sekret R. Comparison of LCA results of low temperature heat plant using electric heat pump, absorption heat pump and gas-fired boiler. Energy Conversion and Management 2014:87:647–652. doi:10.1016/j.enconman.2014.07.03210.1016/j.enconman.2014.07.032
  29. [29] Parajuli R., et al. Life Cycle Assessment of district heat production in a straw fired CHP plant. Biomass and Bioenergy 2014:68:115–134. doi:10.1016/j.biombioe.2014.06.00510.1016/j.biombioe.2014.06.005
  30. [30] Ivner J., Broberg Viklund S. Effect of the use of industrial excess heat in district heating on greenhouse gas emissions: A systems perspective. Resources Conservavtion and Recycing 2015:100:81–87. doi:10.1016/j.resconrec.2015.04.01010.1016/j.resconrec.2015.04.010
  31. [31] Sandvall A. F., Ahlgren E. O., Ekvall T. Low-energy buildings heat supply–Modelling of energy systems and carbon emissions impacts. Energy Policy 2017:111:371–382. doi:10.1016/j.enpol.2017.09.00710.1016/j.enpol.2017.09.007
  32. [32] Bartolozzi Irizzi., F., Frey M. Are district heating systems and renewable energy sources always an environmental win-win solution? A life cycle assessment case study in Tuscany, Italy. Renewable and Sustainable Energy Reviews 2017:80:408–420. doi:10.1016/j.rser.2017.05.23110.1016/j.rser.2017.05.231
  33. [33] Havukainen J., Nguyen M. T., Väisänen S., Horttanainen M. Life cycle assessment of small-scale combined heat and power plant: Environmental impacts of different forest biofuels and replacing district heat produced from natural gas. Journal of Cleaner Production 2018:172:837–846. doi:10.1016/j.jclepro.2017.10.24110.1016/j.jclepro.2017.10.241
  34. [34] Pericault Y., Kärrman E., Viklander M., Hedström A. Data supporting the life cycle impact assessment and cost evaluation of technical alternatives for providing water and heating services to a suburban development in Gällivare Sweden. Data in Brief 2018:21:1204–1208. doi:10.1016/j.dib.2018.10.05810.1016/j.dib.2018.10.058623128530456233
  35. [35] Pakere I., Romagnoli F., Blumberga D. Introduction of small-scale 4th generation district heating system. Methodology approach. Energy Procedia 2018:149:549–554. doi:10.1016/j.egypro.2018.08.21910.1016/j.egypro.2018.08.219
  36. [36] Møller Sneum D., Sandberg E., Koduvere H., Olsen O. J., Blumberga D. Policy incentives for flexible district heating in the Baltic countries. Utilities Policy 2018:51:61–72. doi:10.1016/j.jup.2018.02.00110.1016/j.jup.2018.02.001
  37. [37] Park B. S., Imran M., Hoon I. Y., Usman M. Thermo-economic optimization of secondary distribution network of low temperature district heating network under local conditions of South Korea. Applied Thermal Engineering 2017:126:117–133. doi:10.1016/j.applthermaleng.2017.07.08010.1016/j.applthermaleng.2017.07.080
  38. [38] Flores J. F. C., Lacarrière B., Chiu J. N. W., Martin V. Assessing the techno-economic impact of low-temperature subnets in conventional district heating networks. Energy Procedia 2017:116:260–272. doi:10.1016/j.egypro.2017.05.07310.1016/j.egypro.2017.05.073
  39. [39] Kauko H., Kvalsvik K. H., Rohde D., Hafner A., Nord N. Dynamic modelling of local low-temperature heating grids: A case study for Norway. Energy 2017:139:289–297. doi:10.1016/j.energy.2017.07.08610.1016/j.energy.2017.07.086
  40. [40] Balić D., Maljković D., Lončar D. Multi-criteria analysis of district heating system operation strategy. Energy Conversion Management 2017:144:414–428. doi:10.1016/j.enconman.2017.04.07210.1016/j.enconman.2017.04.072
  41. [41] Lauka D., Pakere I., Blumberga D. First solar power plant in Latvia. Analysis of operational data. Energy Procedia 2018:147:162–165. doi:10.1016/j.egypro.2018.07.04910.1016/j.egypro.2018.07.049
  42. [42] Ziemele J., Pakere I., Blumberga D. Development of District Heating System in Case of Decreased Heating Loads. Presented at the 27th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2014), Turku, Finland, 2014:2044–2055.
  43. [43] Kittipongvises S. Assessment of environmental impacts of limestone quarrying operations in Thailand. Environmental and Climate Technologies 2017:20(1):67–83. doi:10.1515/rtuect-2017-001110.1515/rtuect-2017-0011
DOI: https://doi.org/10.2478/rtuect-2019-0068 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 272 - 290
Published on: Nov 18, 2019
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Maksims Feofilovs, Ieva Pakere, Francesco Romagnoli, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.