[2] Thellufsen J. Z., Nielsen S., Lund H. Implementing cleaner heating solutions towards a future low-carbon scenario in Ireland. Journal of Cleaner Production 2019:214:377–388. doi:10.1016/j.jclepro.2018.12.30310.1016/j.jclepro.2018.12.303
[6] Connolly D., et al. Heat roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system. Energy Policy 2014:65:475–489. doi:10.1016/j.enpol.2013.10.03510.1016/j.enpol.2013.10.035
[9] Imran M., Usman M., Im Y. H., Park B. S. The feasibility analysis for the concept of low temperature district heating network with cascade utilization of heat between networks. Energy Procedia 2017:116:4–12. doi:10.1016/j.egypro.2017.05.05010.1016/j.egypro.2017.05.050
[10] Schuchardt K. Integration of decentralized thermal storages within district heating networks. Environmental and Climate Technologies 2016:18:5–16. doi:10.1515/rtuect-2016-000910.1515/rtuect-2016-0009
[15] Olsthoorn D., Haghighat F., Mirzaei P. A. Integration of storage and renewable energy into district heating systems: A review of modelling and optimization. Solar Energy 2016:136:49–64. doi:10.1016/j.solener.2016.06.05410.1016/j.solener.2016.06.054
[16] Fachinger F., Drewnick F., Gieré R., Borrmann S. Communal biofuel burning for district heating: Emissions and immissions from medium-sized (0.4 and 1.5 MW) facilities. Atmospheric Environment 2017:181:177–185. doi:10.1016/j.atmosenv.2018.03.01410.1016/j.atmosenv.2018.03.014
[17] Caputo P., Ferla G., Ferrari S. Evaluation of environmental and energy effects of biomass district heating by a wide survey based on operational conditions in Italy. Energy 2019:174:1210–1218. doi:10.1016/j.energy.2019.03.07310.1016/j.energy.2019.03.073
[20] Baldvinsson I., Nakata T. A feasibility and performance assessment of a low temperature district heating system – A North Japanese case study. Energy 2016:95:155–174. doi:10.1016/j.energy.2015.11.05710.1016/j.energy.2015.11.057
[22] Laukkanen T. P., Kohl T., Järvinen M. P., Ahtila P. Primary exergy efficiency-effect of system efficiency environment to benefits of exergy savings. Energy and Buildings 2016:124:248–254. doi:10.1016/j.enbuild.2015.09.03510.1016/j.enbuild.2015.09.035
[25] Coss S., Verda V., Le-Corre O. Multi-objective optimization of district heating network model and assessment of demand side measures using the load deviation index. Journal of Cleaner Production 2018:182:338–351. doi:10.1016/j.jclepro.2018.02.08310.1016/j.jclepro.2018.02.083
[26] Patterson M., McDonald G., Hardy D. Is there more in common than we think? Convergence of ecological footprinting, emergy analysis, life cycle assessment and other methods of environmental accounting. Ecological Modelling 2017:362:19–36. doi:10.1016/j.ecolmodel.2017.07.02210.1016/j.ecolmodel.2017.07.022
[27] Oliver-Solà J., Gabarrell X., Rieradevall J. Environmental impacts of the infrastructure for district heating in urban neighbourhoods. Energy Policy 2009:37(11):4711–4719. doi:10.1016/j.enpol.2009.06.02510.1016/j.enpol.2009.06.025
[28] Nitkiewicz A., Sekret R. Comparison of LCA results of low temperature heat plant using electric heat pump, absorption heat pump and gas-fired boiler. Energy Conversion and Management 2014:87:647–652. doi:10.1016/j.enconman.2014.07.03210.1016/j.enconman.2014.07.032
[30] Ivner J., Broberg Viklund S. Effect of the use of industrial excess heat in district heating on greenhouse gas emissions: A systems perspective. Resources Conservavtion and Recycing 2015:100:81–87. doi:10.1016/j.resconrec.2015.04.01010.1016/j.resconrec.2015.04.010
[31] Sandvall A. F., Ahlgren E. O., Ekvall T. Low-energy buildings heat supply–Modelling of energy systems and carbon emissions impacts. Energy Policy 2017:111:371–382. doi:10.1016/j.enpol.2017.09.00710.1016/j.enpol.2017.09.007
[32] Bartolozzi Irizzi., F., Frey M. Are district heating systems and renewable energy sources always an environmental win-win solution? A life cycle assessment case study in Tuscany, Italy. Renewable and Sustainable Energy Reviews 2017:80:408–420. doi:10.1016/j.rser.2017.05.23110.1016/j.rser.2017.05.231
[33] Havukainen J., Nguyen M. T., Väisänen S., Horttanainen M. Life cycle assessment of small-scale combined heat and power plant: Environmental impacts of different forest biofuels and replacing district heat produced from natural gas. Journal of Cleaner Production 2018:172:837–846. doi:10.1016/j.jclepro.2017.10.24110.1016/j.jclepro.2017.10.241
[34] Pericault Y., Kärrman E., Viklander M., Hedström A. Data supporting the life cycle impact assessment and cost evaluation of technical alternatives for providing water and heating services to a suburban development in Gällivare Sweden. Data in Brief 2018:21:1204–1208. doi:10.1016/j.dib.2018.10.05810.1016/j.dib.2018.10.058623128530456233
[35] Pakere I., Romagnoli F., Blumberga D. Introduction of small-scale 4th generation district heating system. Methodology approach. Energy Procedia 2018:149:549–554. doi:10.1016/j.egypro.2018.08.21910.1016/j.egypro.2018.08.219
[36] Møller Sneum D., Sandberg E., Koduvere H., Olsen O. J., Blumberga D. Policy incentives for flexible district heating in the Baltic countries. Utilities Policy 2018:51:61–72. doi:10.1016/j.jup.2018.02.00110.1016/j.jup.2018.02.001
[37] Park B. S., Imran M., Hoon I. Y., Usman M. Thermo-economic optimization of secondary distribution network of low temperature district heating network under local conditions of South Korea. Applied Thermal Engineering 2017:126:117–133. doi:10.1016/j.applthermaleng.2017.07.08010.1016/j.applthermaleng.2017.07.080
[38] Flores J. F. C., Lacarrière B., Chiu J. N. W., Martin V. Assessing the techno-economic impact of low-temperature subnets in conventional district heating networks. Energy Procedia 2017:116:260–272. doi:10.1016/j.egypro.2017.05.07310.1016/j.egypro.2017.05.073
[39] Kauko H., Kvalsvik K. H., Rohde D., Hafner A., Nord N. Dynamic modelling of local low-temperature heating grids: A case study for Norway. Energy 2017:139:289–297. doi:10.1016/j.energy.2017.07.08610.1016/j.energy.2017.07.086
[42] Ziemele J., Pakere I., Blumberga D. Development of District Heating System in Case of Decreased Heating Loads. Presented at the 27th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2014), Turku, Finland, 2014:2044–2055.
[43] Kittipongvises S. Assessment of environmental impacts of limestone quarrying operations in Thailand. Environmental and Climate Technologies 2017:20(1):67–83. doi:10.1515/rtuect-2017-001110.1515/rtuect-2017-0011