[2] Kelly M. S., Dworjanyn S. The potential of marine biomass for anaerobic biogas production: a feasibility study with recommendations for further research. UK: The crown estate, 2008.
[3] Matemilola S., Elegbede I. O., Kies F., Yusuf G. A., Yangni G. N., Garba I. An Analysis of the Impacts of Bioenergy Development on Food Security in Nigeria: Challenges and Prospects. Environmental and Climate Technologies, 2019:23(1):64–83. doi:10.2478/rtuect-2019-000510.2478/rtuect-2019-0005
[4] Chiaramonti D., Prussi M., Buffi M., Casini D., Rizzo A. Thermochemical conversion of microalgae: Challenges and opportunities. Energy Procedia 2015:75:819–826. doi:10.1016/j.egypro.2015.07.14210.1016/j.egypro.2015.07.142
[5] Balina K., Romagnoli F., Pastare L., Blumberga D. Use of macroalgae for bioenergy production in Latvia: review on potential availability of marine coastline species. Energy Procedia 2017:113:403–410. doi:10.1016/j.egypro.2017.04.02210.1016/j.egypro.2017.04.022
[7] Pastare L., Romagnoli F., Rugele K., Dzene I., Blumberga D. Biochemical methane potential from anaerobic digestion of the macrophyte Cerathophyllum demersum: a batch test study for Latvian conditions. Energy Procedia 2015:72:310–316. doi:10.1016/j.egypro.2015.06.04510.1016/j.egypro.2015.06.045
[8] Sabunas A., Romagnoli F., Pastare L., Balina K. Laboratory algae cultivation and BMP test with Ulva intestinalis from the Gulf of Riga. Energy Procedia 2017:113:227–284. doi:10.1016/j.egypro.2017.04.06610.1016/j.egypro.2017.04.066
[9] Romagnoli F., Pastare L., Sabunas A., Balina K., Blumberga D. Effects of pre-treatment on Biochemical Methane Potential (BMP) testing using Baltic Sea Fucus vesiculosus feedstock. Biomass and Bioenergy 2017:105:23–31. doi:10.1016/j.biombioe.2017.06.01310.1016/j.biombioe.2017.06.013
[10] Graham S., Eastwick C., Snape C., Quick W. Degradation of biomass fuels during artificial storage in laboratory environment. International Journal of Low-Carbon Technologies 2012:7(2):113–119. doi:10.1093/ijlct/cts02910.1093/ijlct/cts029
[14] Holden J. J., Kingzett B. C., MacNeill S., Smith W., Juanes F., Dudas S. E. Beach-cast biomass and commercial harvesting of non-indigenous seaweed, Mazzaella japnocia, on the east coast of Vancouver, British Columbia. Journal of Applied Phycology 2018:30(2):1175–1184. doi:10.1007/s10811-017-1321-110.1007/s10811-017-1321-1
[15] Dhanushkodi S., Wilson V. H., Sudhakar K. Life cycle cost of solar biomass hybrid dryer systems for cashew drying of nuts in India. Environmental and Climate Technologies 2015:15(1):22–33. doi:10.1515/rtuect-2015-000310.1515/rtuect-2015-0003
[18] van Djik W., van der Schoot J. R. Public output report of the EnAlgae project: An economical model for offshore cultivation of macroalgae. Swensea, 2015.
[19] Krastina J., Romagnoli F., Balina K. SWOT analysis for a further LCCA-based techno-economic feasibility of a biogas system using seaweeds feedstock. Energy Procedia 2017:128:491–496. doi:10.1016/j.egypro.2017.09.06510.1016/j.egypro.2017.09.065
[20] Ministry of Economics. Methodological guidelines of IRR calculations in order to decrease overcompensation for merchants selling electricity in the mandatory procurement program. Riga, 2016
[23] Asiedu Y., Gu P. Product life cycle cost analysis: state of the art review. International Journal of Production Research 1998:36:883–908. doi:10.1080/00207549819344410.1080/002075498193444
[25] Potkany M., Hitka M., Krajcirova L. Life Cycle Cost Calculation at the transport company in the supply of production of wooden houses – Case study. MATEC Web of conferences 2017:134:00049. doi:10.1051/matecconf/20171340004910.1051/matecconf/201713400049