Have a personal or library account? Click to login
Optimization of the Effective Heat Supply Radius for the District Heating Systems Cover

Optimization of the Effective Heat Supply Radius for the District Heating Systems

Open Access
|Nov 2019

References

  1. [1] Nuorkivi A. District heating and cooling policies worldwide. In: Wiltshire R. (Ed.), Advanced District Heating and Cooling (DHC) Systems. Woodhead Publishing is an imprint of Elsevier, 2016.10.1016/B978-1-78242-374-4.00002-1
  2. [2] Gong M., Werner S. Mapping energy and exergy flows of district heating in Sweden. Energy Procedia 2017:116:119–127. doi:10.1016/j.egypro.2017.05.06010.1016/j.egypro.2017.05.060
  3. [3] Werner S. International review of district heating and cooling. Energy 2017:137:617–631. doi:10.1016/j.energy.2017.04.04510.1016/j.energy.2017.04.045
  4. [4] Levin L., Beneson E., et al. Scientific and Technical Progress in District Heating and Cogeneration. In: Rudenko, Y. (Ed.), Soviet Technology Reviews Book Series. Section A. Energy Reviews. Taylor & Francis, UK, 1990.
  5. [5] Lund H., Werner S., Wiltshire R., et al. 4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems. Energy 2014:68:1–11. doi:10.1016/j.energy.2014.02.08910.1016/j.energy.2014.02.089
  6. [6] Vigants E., Prodanuks, Vigants G., Veidenbergs I., Blumberga D. Modelling of Technological Solutions to 4th Generation DH Systems. Environmental and Climate Technologies 2017:20(1):5–23. doi:10.1515/rtuect-2017-000710.1515/rtuect-2017-0007
  7. [7] Lund H., Duic N., Ostergaard P., Mathiesen B. Smart energy systems and 4th generation district heating. Energy 2016:110:1–4.doi: 10.1016/j.energy.2016.07.10510.1016/j.energy.2016.07.105
  8. [8] Oregi X., Hermoso N., Arrizabalaga E., Mabe L., Munoz I. Sensitivity assessment of a district energy assessment characterisation model based on cadastral data. Energy Procedia 2018:147:181–188. doi:10.1016/j.egypro.2018.07.05310.1016/j.egypro.2018.07.053
  9. [9] Locmelis K., Blumberga D., Bariss U. Energy efficiency in large industrial plants. Legislative aspects. Energy Procedia 2018:147:202–206. doi:10.1016/j.egypro.2018.07.05810.1016/j.egypro.2018.07.058
  10. [10] Locmelis K., Blumberga A., Bariss U., Blumberga D. Energy policy for energy intensive manufacturing companies and its impact on energy efficiency improvements. System dynamics approach. Energy Procedia 2017:128:10–16. doi:10.1016/j.egypro.2017.09.00510.1016/j.egypro.2017.09.005
  11. [11] Polikarpova I., Rosa M. Energy reduction potential of the district heating company introducing energy management systems. Energy Procedia 2017:128:66–71. doi:10.1016/j.egypro.2017.09.01610.1016/j.egypro.2017.09.016
  12. [12] Zinko H., Bohm B., Sipila K., Rama M. District heating distribution in areas with low heat demand density. In: Zinko H. (Ed.), Report from IEA Implementing Agreement on District Heating and Cooling, Including the Integration of CHP, Annex VIII 2008:8DHC-08-03.
  13. [13] Latosov E., Volkova A., Siirde A., Kurnitski J., Thalfeldt M. Methodological Approach to Determining the Effect of Parallel Energy Consumption on District Heating System. Environmental and Climate Technologies 2017:19(1):5–14. doi:10.1515/rtuect-2017-000110.1515/rtuect-2017-0001
  14. [14] Latosov E., Volkova A., Siirde A., Thalfeldt M., Kurnitski J. The Impact of Parallel Energy Consumption on the District Heating Networks. Environmental and Climate Technologies 2019:23(1):1–13. doi:10.2478/rtuect-2019-000110.2478/rtuect-2019-0001
  15. [15] Christensen B., Jensen-Butler C. Energy and urban structure: Heat planning in Denmark. Progress in Planning 1982:18(2):57–132. doi:10.1016/0305-9006(82)90008-310.1016/0305-9006(82)90008-3
  16. [16] Kristensen P., Sletbjerg M. Energydata – planning and analysis in a GIS. Proceedings of the ESRI User Conference. Munich: 1998.
  17. [17] Moller B. A heat atlas for demand and supply management in Denmark. Management of Environmental Quality: An International Journal 2008:19(4):467–479. doi:10.1108/1477783081087865010.1108/14777830810878650
  18. [18] Persson U., Werner S. Heat distribution and the future competitiveness of district heating. Applied Energy 2011:88(3):568–576. doi:10.1016/j.apenergy.2010.09.02010.1016/j.apenergy.2010.09.020
  19. [19] Werner S. District heating and cooling in Sweden. Energy 2017:126:419–29. doi:10.1016/j.energy.2017.03.05210.1016/j.energy.2017.03.052
  20. [20] Connolly D., Lund H., Mathiesen B., et al. Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system. Energy Policy 2014:65:475–489. doi:10.1016/j.enpol.2013.10.03510.1016/j.enpol.2013.10.035
  21. [21] Connolly D., Mathiesen B., Ostergaard P., et al. Heat Roadmap Europe: Second Pre-Study, Aalborg University, Halmstad University, Ecofys Germany GmbH, PlanEnergi and Euroheat & Power, 2013.
  22. [22] HRE4. Heat Roadmap Europe 4. Heating and Cooling, Facts and Figures [Online]. [Accessed 10.02.2019]. Available: http://www.heatroadmap.eu/
  23. [23] Persson U., Moller B., Werner S. Heat Roadmap Europe: Identifying strategic heat synergy regions. Energy Policy 2014:74:663–681. doi:10.1016/j.enpol.2014.07.01510.1016/j.enpol.2014.07.015
  24. [24] Dalla-Rosa A., Li H., Svendsen S. Method for optimal design of pipes for low-energy district heating, with focus on heat losses. Energy 2011:36(5):2407–2418. doi:10.1016/j.energy.2011.01.02410.1016/j.energy.2011.01.024
  25. [25] Tol H., Svendsen S. Improving the dimensioning of piping networks and network layouts in low-energy district heating systems connected to low-energy buildings: A case study in Roskilde, Denmark. Energy 2012:38:276–290. doi:10.1016/j.energy.2011.12.00210.1016/j.energy.2011.12.002
  26. [26] Volkova A., Mashatin V., Hlebnikov A., Andres S. Methodology for the Improvement of Large District Heating Networks. Environmental and Climate Technologies 2012:10(1):39–45. doi:10.2478/v10145-012-0009-710.2478/v10145-012-0009-7
  27. [27] Bolonina A., Bolonins G., Blumberga D. Analysis of the Impact of Decreasing District Heating Supply Temperature on Combined Heat and Power Plant Operation. Environmental and Climate Technologies 2014:14(1):41–46. doi:10.1515/rtuect-2014-001310.1515/rtuect-2014-0013
  28. [28] Schmidt D., et al. Low temperature district heating for future energy systems. Energy Procedia 2017:116:26–38. doi:10.1016/j.egypro.2017.05.05210.1016/j.egypro.2017.05.052
  29. [29] Schuchardt (neé Bestrzynski) G. K. Integration of decentralized thermal storages within district heating networks. Environmental and Climate Technologies 2016:18(1):5–16. doi:10.1515/rtuect-2016-000910.1515/rtuect-2016-0009
  30. [30] Persson U., Werner S. Effective width – the relative demand for district heating pipe lengths in city areas. In: Proceedings of The 12th International Symposium on District Heating and Cooling. Tallinn, Estonia: 2010:128–131.
  31. [31] BSREC. District Heating and Cooling, Combined Heat and Power and Renewable Energy Sources. The Baltic Sea Region Energy Cooperation, 2014. [Online]. [Accessed 10.02.2019]. Available: http://basrec.net/wp-content/uploads/2014/06/Appendix%20-%20country%20survey.pdf
  32. [32] Patronen J., Kaura E., Torvestad C. Nordic heating and cooling. Nordic approach to EU's Heating and Cooling Strategy. Nordic Council of Ministers, 2017. [Online]. [Accessed 10.02.2019]. doi: 10.6027/TN2017-53210.6027/TN2017-532
  33. [33] DEA. District Heating – Danish and Chinese Experience. Danish Energy Agency, Danish Board of District Heating; 2017. [Online]. [Accessed 10.02.2019]. Available: https://ens.dk/sites/ens.dk/files/energistyrelsen/Nyheder/district_heating_danish-chinese_experiences.pdf
  34. [34] Zhang L., Gudmundsson O., Li H., Svendsen S. Comparison of District Heating Systems Used in China and Denmark. International Journal of Sustainable and Green Energy 2015:4(3):102–116.
  35. [35] Pakere I., Ziemele J., Blumberga D. DH company in prosumers role. Energy Procedia 2017:128:234–239. doi:10.1016/j.egypro.2017.09.06110.1016/j.egypro.2017.09.061
  36. [36] Postnikov I., Stennikov V., Penkovskii A. Prosumer in the District Heating Systems: Operating and Reliability Modeling. Energy Procedia 2019:158:2530–2535. doi:10.1016/j.egypro.2019.01.41110.1016/j.egypro.2019.01.411
  37. [37] Chicherin S. Low-temperature district heating distributed from transmission-distribution junctions to users: energy and environmental modelling. Energy Procedia 2018:147:382–389. doi:10.1016/j.egypro.2018.07.10710.1016/j.egypro.2018.07.107
  38. [38] Brailov V., Kuznetsov Y., Khrilev L. Determining the economic efficiency of combined and separate schemes of power supply on the basis of nuclear and fossil fuel. Thermal Engineering 2011:58(12):1033–1042. doi:10.1134/S004060151112005610.1134/S0040601511120056
  39. [39] Khrilev L., Smirnov I. Socio-Economic Principles and Lines of Development of District Heating. Thermal Engineering 2005:52(2):93–102.
  40. [40] Yakimov L. Maximum radius of district heating action. Heat and power 1931:9:8–10.
  41. [41] Stennikov V., Iakimetc E. Optimal planning of heat supply systems in urban areas. Energy 2016:110:157–165. doi:10.1016/j.energy.2016.02.06010.1016/j.energy.2016.02.060
  42. [42] Filippov S. P. Development of Centralized District Heating in Russia. Thermal Engineering 2009:56(12):985–997. doi:10.1134/S004060150912001510.1134/S0040601509120015
  43. [43] Papushkin V. Heat supply radius. The well-forgotten old. News of heat supply 2010:9:44–9.
  44. [44] Semenov V., Razorenov R. Express-analysis of relationship between heat transportation effectiveness and remoteness of consumers. News of heat supply 2006:6:36–38.
  45. [45] Stennikov V., Mednikova E. Analysis of Trends in the Development of Cities’ Heat Supply Systems. Thermal Engineering 2016:63(9):657–665. doi:10.1134/S004060151609006810.1134/S0040601516090068
  46. [46] Ershova M. Introduction into a bi-level programming. Manual. Irkutsk: ISU, 2006.
  47. [47] Bard J. F. Practical Bilevel Optimization. Springer Science + Business Media Dordrecht, 1998. doi:10.1007/978-1-4757-2836-110.1007/978-1-4757-2836-1
  48. [48] Dempe S. Foundations of Bilevel Programming. Dordrecht, Netherlands: Kluwer Academic Publishers, 2002.
  49. [49] Merenkov A., Khasilev V. Theory of hydraulic circuits. Мoscow: Nauka, 1985.
  50. [50] Sennova E., et al. Reliability of heat supply systems. Novosibirsk: Nauka, 2000.
  51. [51] Stennikov V., Postnikov I. Methods for the integrated reliability analysis of heat supply. Power Technology and Engineering 2014:47(6):446–453. doi:10.1007/s10749-014-0467-010.1007/s10749-014-0467-0
  52. [52] Postnikov I., Stennikov V., Mednikova E., Penkovskii A. Methodology for optimization of component reliability of heat supply systems. Applied Energy 2018:227:365–374. doi:10.1016/j.apenergy.2017.11.07310.1016/j.apenergy.2017.11.073
DOI: https://doi.org/10.2478/rtuect-2019-0064 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 207 - 221
Published on: Nov 18, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Valery Stennikov, Ekaterina Mednikova, Ivan Postnikov, Andrey Penkovskii, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.