[1] Klavins M., Bisters V., Burlakovs J. Small scale gasification application and perspectives in circular economy. Environmental and Climate Technologies 2018:22:42–54. doi:10.2478/rtuect-2018-000310.2478/rtuect-2018-0003
[2] Kittipongvises S. Assessment of environmental impacts of limestone quarrying operations in Thailand. Environmental and Climate Technologies 2017:20:67–83. doi:10.1515/rtuect-2017-001110.1515/rtuect-2017-0011
[4] Kumar A., et al. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renewable and Sustainable Energy Reviews 2017:69:596–609. doi:10.1016/j.rser.2016.11.19110.1016/j.rser.2016.11.191
[5] Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Union 2009:L140/16.
[7] European Commission. Report from the commission to the European parliament, the Council, the European economic and social committee and the Committee of the regions. Brussels: European Commission, 2019.
[12] Krog L., Sperling K. A. comprehensive framework for strategic energy planning based on Danish and international insights. Energy Strategy Reviews 2019:24:83–93. doi:10.1016/j.esr.2019.02.00510.1016/j.esr.2019.02.005
[14] Yang Y., et al. Using multi-criteria analysis to prioritize renewable energy home heating technologies. Sustainable Energy Technologies and Assessments 2018:29:36–43. doi:10.1016/j.seta.2018.06.00510.1016/j.seta.2018.06.005
[17] Mahapatra K., Gustavsson L. An adopter-centric approach to analyze the diffusion patterns of innovative residential heating systems in Sweden. Energy Policy 2008:36(2):577–590. doi:10.1016/j.enpol.2007.10.00610.1016/j.enpol.2007.10.006
[18] Panula-Ontto J., et al. Cross-impact analysis of Finnish electricity system with increased renewables: Long-run energy policy challenges in balancing supply and consumption. Energy Policy 2018:118:504–513. doi:10.1016/j.enpol.2018.04.00910.1016/j.enpol.2018.04.009
[19] Jung N., et al. Social acceptance of renewable energy technologies for buildings in the Helsinki Metropolitan Area of Finland. Renewable Energy 2016:99:813–824. doi:10.1016/j.renene.2016.07.00610.1016/j.renene.2016.07.006
[21] Gaigalis V., Markevicius A., Katinas V., Skema R. Analysis of the renewable energy promotion in Lithuania in compliance with the European Union strategy and policy. Renewable and Sustainable Energy Reviews 2014:35:422–435. doi:10.1016/j.rser.2014.04.01310.1016/j.rser.2014.04.013
[24] Ligus M., Peternek P. Determination of most suitable low-emission energy technologies development in Poland using integrated fuzzy AHP-TOPSIS method. Energy Procedia 2018:153:101–106. doi:10.1016/j.egypro.2018.10.04610.1016/j.egypro.2018.10.046
[26] Polityka energetyczna Polski do roku 2030 (Energy policy of Poland until 2030). Appendix to Resolution no. 202/2009 of the Council of Ministers of 10 November 2009. (in Polish)
[27] Krajowy plan działania w zakresie energii ze zrode ł odnawialnych (National Action Plan for Renewable Energy Sources). Warszawa: Ministerstwo Gospodarki, 2010. (in Polish)
[28] Sowizdza A. Geothermal energy resources in Poland – Overview of the current state of knowledge. Renewable and Sustainable Energy Reviews 2018:82(3):4020–4027. doi:10.1016/j.rser.2017.10.07010.1016/j.rser.2017.10.070
[30] Ligus M. Evaluation of economic, social and environmental effects of low-emission energy technologies development in Poland: a multi-criteria analysis with application of a fuzzy analytic hierarchy process (FAHP). Energies 2017:10(10):1550. doi:10.3390/en1010155010.3390/en10101550
[31] Bórawski P., et al. Development of renewable energy sources market and biofuels in the European union. Accepted manuscript. Journal of Cleaner Production 2019:228:467–484. doi:10.1016/j.jclepro.2019.04.24210.1016/j.jclepro.2019.04.242
[32] Karatasou S, Laskari M, Santamouris M. Models of behavior change and residential energy use: a review of research directions and findings for behavior-based energy efficiency. Advances in Building Energy Research 2014:8(2):137–147. doi:10.1080/17512549.2013.80927510.1080/17512549.2013.809275
[35] Wang J., Jing Y., Zhang C., Zhao J. Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews 2009:13(9):2263–2278. doi:10.1016/j.rser.2009.06.02110.1016/j.rser.2009.06.021
[38] Sianaki O. A. Intelligent Decision Support System for Energy Management in Demand Response Programs and Residential and Industrial Sectors of the Smart Grid. School of Information Systems. Curtin: Curtin Business School, 2015.
[39] Mezősi A., Szabó L., Szabó S. Cost-efficiency benchmarking of European renewable electricity support schemes. Renewable and Sustainable Energy reviews 2018:98:217–226. doi:10.1016/j.rser.2018.09.00110.1016/j.rser.2018.09.001
[40] Lauka D., Barisa A., Blumberga D. Assessment of the availability and utilization potential of low-quality biomass in Latvia. Energy Procedia 2018:147:518–524. doi:10.1016/j.egypro.2018.07.06510.1016/j.egypro.2018.07.065
[41] European Commission. First estimates of Research & Development expenditure “R&D expenditure in the EU increased slightly to 2.07% of GDP in 2017. Brussels: European Commission, 2019.