Have a personal or library account? Click to login

Progress in Renewable Energy Technologies: Innovation Potential in Latvia

Open Access
|Nov 2019

References

  1. [1] Klavins M., Bisters V., Burlakovs J. Small scale gasification application and perspectives in circular economy. Environmental and Climate Technologies 2018:22:42–54. doi:10.2478/rtuect-2018-000310.2478/rtuect-2018-0003
  2. [2] Kittipongvises S. Assessment of environmental impacts of limestone quarrying operations in Thailand. Environmental and Climate Technologies 2017:20:67–83. doi:10.1515/rtuect-2017-001110.1515/rtuect-2017-0011
  3. [3] Zappa W., Junginger M., Broe M. Is a 100% renewable European power system feasible by 2050? Applied energy 2019:233–234:1027–1050. doi:10.1016/j.apenergy.2018.08.10910.1016/j.apenergy.2018.08.109
  4. [4] Kumar A., et al. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renewable and Sustainable Energy Reviews 2017:69:596–609. doi:10.1016/j.rser.2016.11.19110.1016/j.rser.2016.11.191
  5. [5] Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Union 2009:L140/16.
  6. [6] Eurostat. Renewable energy statistics. Statistics Explained [Online]. Available: https://ec.europa.eu/eurostat/statistics-explained/index.php/Renewable_energy_statistics
  7. [7] European Commission. Report from the commission to the European parliament, the Council, the European economic and social committee and the Committee of the regions. Brussels: European Commission, 2019.
  8. [8] Rogge N. EU countries’ progress towards ‘Europe 2020 strategy targets’. Journal of Policy Modeling 2019:41(2):255–272. doi:10.1016/j.jpolmod.2019.03.00310.1016/j.jpolmod.2019.03.003
  9. [9] Central Statistical Bureau of Latvia. Catalogue of Statistical Publications 2019.
  10. [10] Electricity Market Review by JSC Augstsprieguma tikls [Online]. Available: http://ast.lv/lv/electricity-market-review
  11. [11] IRENA. Renewable capacity statistics 2018. Abu Dhabi: International Renewable Energy Agency (IRENA), 2018.
  12. [12] Krog L., Sperling K. A. comprehensive framework for strategic energy planning based on Danish and international insights. Energy Strategy Reviews 2019:24:83–93. doi:10.1016/j.esr.2019.02.00510.1016/j.esr.2019.02.005
  13. [13] Zinck Thellufsen J., Lund H. Cross-border versus cross-sector interconnectivity in renewable energy system. Energy 2017:124:492–501. doi:10.1016/j.energy.2017.02.11210.1016/j.energy.2017.02.112
  14. [14] Yang Y., et al. Using multi-criteria analysis to prioritize renewable energy home heating technologies. Sustainable Energy Technologies and Assessments 2018:29:36–43. doi:10.1016/j.seta.2018.06.00510.1016/j.seta.2018.06.005
  15. [15] Dansk Arkitektur Center. Green growth in Denmark towards 2050. Four future scenarios. DK 2050.
  16. [16] Bergek A., Mignon I. Motives to adopt renewable electricity technologies: Evidence from Sweden. Energy Policy 2017:106:547–559. doi:10.1016/j.enpol.2017.04.01610.1016/j.enpol.2017.04.016
  17. [17] Mahapatra K., Gustavsson L. An adopter-centric approach to analyze the diffusion patterns of innovative residential heating systems in Sweden. Energy Policy 2008:36(2):577–590. doi:10.1016/j.enpol.2007.10.00610.1016/j.enpol.2007.10.006
  18. [18] Panula-Ontto J., et al. Cross-impact analysis of Finnish electricity system with increased renewables: Long-run energy policy challenges in balancing supply and consumption. Energy Policy 2018:118:504–513. doi:10.1016/j.enpol.2018.04.00910.1016/j.enpol.2018.04.009
  19. [19] Jung N., et al. Social acceptance of renewable energy technologies for buildings in the Helsinki Metropolitan Area of Finland. Renewable Energy 2016:99:813–824. doi:10.1016/j.renene.2016.07.00610.1016/j.renene.2016.07.006
  20. [20] Aslani A., Helo O., Naaranoja M. Role of renewable energy policies in energy dependency in Finland: System dynamics approach. Applied Energy 2014:113:758–765. doi:10.1016/j.apenergy.2013.08.01510.1016/j.apenergy.2013.08.015
  21. [21] Gaigalis V., Markevicius A., Katinas V., Skema R. Analysis of the renewable energy promotion in Lithuania in compliance with the European Union strategy and policy. Renewable and Sustainable Energy Reviews 2014:35:422–435. doi:10.1016/j.rser.2014.04.01310.1016/j.rser.2014.04.013
  22. [22] Zhang C., et al. Probabilistic multi-criteria assessment of renewable micro-generation technologies in households. Journal of Cleaner Production 2019:212:582–592. doi:10.1016/j.jclepro.2018.12.05110.1016/j.jclepro.2018.12.051
  23. [23] Valodka I., Valodkienė G. The Impact of Renewable Energy on the Economy of Lithuania. Procedia - Social and Behavioral Sciences 2015:213:123–128. doi:10.1016/j.sbspro.2015.11.41410.1016/j.sbspro.2015.11.414
  24. [24] Ligus M., Peternek P. Determination of most suitable low-emission energy technologies development in Poland using integrated fuzzy AHP-TOPSIS method. Energy Procedia 2018:153:101–106. doi:10.1016/j.egypro.2018.10.04610.1016/j.egypro.2018.10.046
  25. [25] Paska J., Surma T. Electricity generation from renewable energy sources in Poland. Renewable Energy 2014:71:286–294. doi:10.1016/j.renene.2014.05.01110.1016/j.renene.2014.05.011
  26. [26] Polityka energetyczna Polski do roku 2030 (Energy policy of Poland until 2030). Appendix to Resolution no. 202/2009 of the Council of Ministers of 10 November 2009. (in Polish)
  27. [27] Krajowy plan działania w zakresie energii ze zrode ł odnawialnych (National Action Plan for Renewable Energy Sources). Warszawa: Ministerstwo Gospodarki, 2010. (in Polish)
  28. [28] Sowizdza A. Geothermal energy resources in Poland – Overview of the current state of knowledge. Renewable and Sustainable Energy Reviews 2018:82(3):4020–4027. doi:10.1016/j.rser.2017.10.07010.1016/j.rser.2017.10.070
  29. [29] Kępińska B. Geothermal energy use – country update for Poland, 2013–2015. Proceeding European geothermal congress 2016, Strasbourg, France, 2016.
  30. [30] Ligus M. Evaluation of economic, social and environmental effects of low-emission energy technologies development in Poland: a multi-criteria analysis with application of a fuzzy analytic hierarchy process (FAHP). Energies 2017:10(10):1550. doi:10.3390/en1010155010.3390/en10101550
  31. [31] Bórawski P., et al. Development of renewable energy sources market and biofuels in the European union. Accepted manuscript. Journal of Cleaner Production 2019:228:467–484. doi:10.1016/j.jclepro.2019.04.24210.1016/j.jclepro.2019.04.242
  32. [32] Karatasou S, Laskari M, Santamouris M. Models of behavior change and residential energy use: a review of research directions and findings for behavior-based energy efficiency. Advances in Building Energy Research 2014:8(2):137–147. doi:10.1080/17512549.2013.80927510.1080/17512549.2013.809275
  33. [33] Sengül U., et al. Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey. Renewable energy 2015:75:617–625. doi:10.1016/j.renene.2014.10.04510.1016/j.renene.2014.10.045
  34. [34] Hwang C. L., Yoon K. P. Multiple attribute decision making: Methods and applications. Springer, 1981.10.1007/978-3-642-48318-9
  35. [35] Wang J., Jing Y., Zhang C., Zhao J. Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews 2009:13(9):2263–2278. doi:10.1016/j.rser.2009.06.02110.1016/j.rser.2009.06.021
  36. [36] IRENA, Renewable Power generation Costs in 2017. AbuDhabi: International Renewable Energy Agency (IRENA), 2018.
  37. [37] Lauka D. Sustainability analysis of renewable energy sources. Riga: RTU Press, 2018.
  38. [38] Sianaki O. A. Intelligent Decision Support System for Energy Management in Demand Response Programs and Residential and Industrial Sectors of the Smart Grid. School of Information Systems. Curtin: Curtin Business School, 2015.
  39. [39] Mezősi A., Szabó L., Szabó S. Cost-efficiency benchmarking of European renewable electricity support schemes. Renewable and Sustainable Energy reviews 2018:98:217–226. doi:10.1016/j.rser.2018.09.00110.1016/j.rser.2018.09.001
  40. [40] Lauka D., Barisa A., Blumberga D. Assessment of the availability and utilization potential of low-quality biomass in Latvia. Energy Procedia 2018:147:518–524. doi:10.1016/j.egypro.2018.07.06510.1016/j.egypro.2018.07.065
  41. [41] European Commission. First estimates of Research & Development expenditure “R&D expenditure in the EU increased slightly to 2.07% of GDP in 2017. Brussels: European Commission, 2019.
DOI: https://doi.org/10.2478/rtuect-2019-0054 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 47 - 63
Published on: Nov 18, 2019
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Karina Suharevska, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.