Have a personal or library account? Click to login

Survey Research of Selected Issues the Sick Building Syndrome (SBS) in an Office Building

Open Access
|Nov 2019

References

  1. [1] Basinska M., Koczyk H., Szczechowiak E. Sensitivity analysis in determining the optimum energy for residential buildings in Polish conditions. Energy and Building 2015:107:307–318. doi:10.1016/j.enbuild.2015.08.02910.1016/j.enbuild.2015.08.029
  2. [2] Ferdyn-Grygierek J., Baranowski A. Internal environment in the museum building—Assessment and improvement of air exchange and its impact on energy demand for heating. Energy and Building 2015:92:45–54. doi:10.1016/j.enbuild.2015.01.03310.1016/j.enbuild.2015.01.033
  3. [3] Krawczyk D. A. Analysis of energy consumption for heating in a residential house in Poland. Energy Procedia 2016:95:216–222. doi:10.1016/j.egypro.2016.09.05310.1016/j.egypro.2016.09.053
  4. [4] Vilcekova S., Meciarova L., Kridlova Burdova E., Katunska J., Kosicanova D., Doroudiani S. Indoor environmental quality of classrooms and occupants' comfort in a special education school in Slovak Republic. Building and Environment 2017:120:29–40. doi:10.1016/j.buildenv.2017.05.00110.1016/j.buildenv.2017.05.001
  5. [5] Arendt K., Krzaczek M., Tejchman J. Influence of input data on airflow network accuracy in residential buildings with natural wind- and stack-driven ventilation. Building Simulation 2017:10(2):229–238. doi:10.1007/s12273-016-0320-510.1007/s12273-016-0320-5
  6. [6] Mukhtar A., Ng K. C., Yusoff M. Z. Design optimization for ventilation shafts of naturally-ventilated underground shelters for improvement of ventilation rate and thermal comfort. Renewable Energy 2018:115:183–198. doi:10.1016/j.renene.2017.08.05110.1016/j.renene.2017.08.051
  7. [7] Silva M. F., Maas S., de Souza H. A., Gomes A. P. Post-occupancy evaluation of residential buildings in Luxembourg with centralized and decentralized ventilation systems, focusing on indoor air quality (IAQ). Assessment by questionnaires and physical measurements. Energy and Building 2017:148:119–127. doi:10.1016/j.enbuild.2017.04.04910.1016/j.enbuild.2017.04.049
  8. [8] Gil-Baez M., Barrios-Padura A., Molina-Huelva M., Chacartegui R. Natural ventilation systems in 21st-century for near zero energy school buildings. Energy 2017:137:1186–1200. doi:10.1016/j.energy.2017.05.18810.1016/j.energy.2017.05.188
  9. [9] Sekhar S. C., Goh S. E. Thermal comfort and IAQ characteristics of naturally/mechanically ventilated and air-conditioned bedrooms in a hot and humid climate. Building and Environment 2011:46:1905–1916. doi:10.1016/j.buildenv.2011.03.01210.1016/j.buildenv.2011.03.012
  10. [10] Wang Z., Xue Q., Ji Y., Yu Z. Indoor environment quality in a low-energy residential building in winter in Harbin. Building and Environment 2018:135:194–201. doi:10.1016/j.buildenv.2018.03.01210.1016/j.buildenv.2018.03.012
  11. [11] Krawczyk D. A., Wądołowska B. Analysis of indoor air parameters in an education building. Energy Procedia 2018:147:96–103. doi:10.1016/j.egypro.2018.07.03810.1016/j.egypro.2018.07.038
  12. [12] Johnson D. L., Lynch R. A., Floyd E. L., Wang J., Bartels J. N. Indoor air quality in classrooms: Environmental measures and effective ventilation rate modeling in urban elementary schools. Building and Environment 2018:136:185–197. doi:10.1016/j.buildenv.2018.03.04010.1016/j.buildenv.2018.03.040
  13. [13] Teleszewski T. J. The Viscous Dissipation Effect in a Regular Polygonal Duct for H2 Boundary Conditions. IOP Conference Series: Materials Science and Engineering 2017:269:012038. doi:10.1088/1757-899X/269/1/01203810.1088/1757-899X/269/1/012038
  14. [14] Teleszewski T. J., Sorko S. A. Effect of viscous dissipation on forced convection for laminar flow through a straight regular polygonal duct using BEM method. International Journal of Numerical Methods for Heat and Fluid Flow 2018:28(1):220–238. doi:10.1108/HFF-09-2017-037110.1108/HFF-09-2017-0371
  15. [15] Marć M., Śmiełowska M., Namieśnik J., Zabiegała B. Indoor air quality of everyday use spaces dedicated to specific purposes-a review. Environmental Science and Pollution Research 2018:25:2065–2082. doi:10.1007/s11356-017-0839-810.1007/s11356-017-0839-8577364429192399
  16. [16] Skowron K., Grudlewska K., Kwiecińska-Piróg J., Gryń G., Śrutek M., Gospodarek-Komkowska E. Efficacy of radiant catalytic ionization to reduce bacterial populations in air and on different surfaces. Science of the Total Environment 2018:610–611:111–120. doi:10.1016/j.scitotenv.2017.08.03210.1016/j.scitotenv.2017.08.03228803189
  17. [17] Śmiełowska M., Marć M., Zabiegała B. Indoor air quality in public utility environments-a review. Environmental Science and Pollution Research 2017:24:11166–11176. doi:10.1007/s11356-017-8567-710.1007/s11356-017-8567-7539327828236201
  18. [18] Földváry V., Bekö G., Langer S., Arrhenius K., Petráš D. Effect of energy renovation on indoor air quality in multifamily residential buildings in Slovakia. Building and Environment 2017:122:363–372. doi:10.1016/j.buildenv.2017.06.00910.1016/j.buildenv.2017.06.009
  19. [19] Bourdakis E., Simone A., Olesen B. W. An experimental study of the effect of different starting room temperatures on occupant comfort in Danish summer weather. Building and Environment 2018:136:269–278. doi:10.1016/j.buildenv.2018.03.04610.1016/j.buildenv.2018.03.046
  20. [20] Ickiewicz I. Building thermomodernization and reducing air pollution. Ecological Chemistry and Engineering S 2013:20(4):805–816. doi:10.2478/eces-2013-005610.2478/eces-2013-0056
  21. [21] Ickiewicz I. Ecological and economic aspects of modernizing district heating systems in north-eastern Poland. Ecological Chemistry and Engineering S 2011:18(4):429–443.
  22. [22] PN-EN 13779:2008 Ventilation for non-residential buildings. Performance requirements for ventilation and room-conditioning systems.
  23. [23] PN-EN 15251:2007 Indoor environmental input parameters for design and assessment of energy performance of buildings - addressing indoor air quality, thermal environment, lighting and acoustics.
  24. [24] Rogulski M. Indoor PM10 concentration measurements using low-cost monitors in selected locations in Warsaw. Energy Procedia 2018:147:137–144.10.1016/j.egypro.2018.07.043
  25. [25] Rogulski M. Low-cost PM monitors as an opportunity to increase the spatiotemporal resolution of measurements of air quality. Energy Procedia 2017:128:437–444. doi:10.1016/j.egypro.2017.09.02610.1016/j.egypro.2017.09.026
  26. [26] Gładyszewska-Fiedoruk K. Ocena powszechności stosowania systemów wentylacji [The assessment of ventilating systems popularity]. Technika Chłodnicza i Klimatyzacyjna 2014:3:117–119
  27. [27] Musa A. R., Abdullah N. A. G., Che-Ani A. I., Tawil N. M., Tahir M. M. Temperature Analysis for Indoor Environmental Quality (IEQ) of UKM Architecture Studio. Procedia – Social and Behavioral Sciences 2012:60:575–581. doi:10.1016/j.sbspro.2012.09.42510.1016/j.sbspro.2012.09.425
  28. [28] Sun Ch., Guo Y., Huang Ch., Zou Z., Hu Y., Liu W. Associations of Building Characteristics and Lifestyle Behaviors with Allergic Disease for Adults in Shanghai: from a Cross-sectional Survey. Procedia Engineering 2017:205:1130–1137. doi:10.1016/j.proeng.2017.10.18210.1016/j.proeng.2017.10.182
  29. [29] Mac Naughton P., Satish U., Cedeno Laurent J. G., Flanigan S., Allen J. G. The impact of working in a green certified building on cognitive function and health. Building and Environment 2017:114:178–186. doi:10.1016/j.buildenv.2016.11.04110.1016/j.buildenv.2016.11.041554398428785124
  30. [30] Othman M., Latif M. T., Mohamed A. F. Health impact assessment from building life cycles and trace metals in coarse particulate matter in urban office environments. Ecotoxicology and Environmental Safety 2018:148:293–302. doi:10.1016/j.ecoenv.2017.10.03410.1016/j.ecoenv.2017.10.03429080527
  31. [31] Polizzi V., Adams A., Picco A. M., Adriaens E., Lenoir J., Van Peteghem C., De Saeger S., De Kimpe N. Influence of environmental conditions on production of volatiles by Trichoderma atroviride in relation with the sick building syndrome. Building and Environment 2011:46(4):945–954. doi:10.1016/j.buildenv.2010.10.02410.1016/j.buildenv.2010.10.024
  32. [32] Vance P. H., Weissfeld A. S. The controversies surrounding sick building syndrome. Clinical Microbiology Newsletter 2007:29(10):73–76. doi:10.1016/j.clinmicnews.2007.04.00710.1016/j.clinmicnews.2007.04.007
  33. [33] Ulpiani G. Overheating phenomena induced by fully-glazed facades: Investigation of a sick building in Italy and assessment of the benefits achieved via fuzzy control of the AC system. Solar Energy 2017:158:572–594. doi:10.1016/j.solener.2017.10.02410.1016/j.solener.2017.10.024
  34. [34] Ulpiani G., Benedettelli M., di Perna C., Naticchia B. Overheating phenomena induced by fully-glazed facades: Investigation of a sick building in Italy and assessment of the benefits achieved via model predictive control of the AC system. Solar Energy 2017:157:830–852. doi:10.1016/j.solener.2017.09.00910.1016/j.solener.2017.09.009
  35. [35] Spiru P., Simona P. L. A review on interactions between energy performance of the buildings, outdoor air pollution and the indoor air quality. Energy Procedia 2017:128:179–186. doi:10.1016/j.egypro.2017.09.03910.1016/j.egypro.2017.09.039
  36. [36] Miezis M., Zvaigznitis K., Stancioff N., Soeftestad L. Climate Change and Buildings Energy Efficiency – the Key Role of Residents. Environmental and Climate Technologies 2016:17(1):30–43. doi:10.1515/rtuect-2016-000410.1515/rtuect-2016-0004
DOI: https://doi.org/10.2478/rtuect-2019-0050 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 1 - 8
Published on: Nov 18, 2019
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2019 Katarzyna Gladyszewska-Fiedoruk, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.