[1] Basinska M., Koczyk H., Szczechowiak E. Sensitivity analysis in determining the optimum energy for residential buildings in Polish conditions. Energy and Building 2015:107:307–318. doi:10.1016/j.enbuild.2015.08.02910.1016/j.enbuild.2015.08.029
[2] Ferdyn-Grygierek J., Baranowski A. Internal environment in the museum building—Assessment and improvement of air exchange and its impact on energy demand for heating. Energy and Building 2015:92:45–54. doi:10.1016/j.enbuild.2015.01.03310.1016/j.enbuild.2015.01.033
[4] Vilcekova S., Meciarova L., Kridlova Burdova E., Katunska J., Kosicanova D., Doroudiani S. Indoor environmental quality of classrooms and occupants' comfort in a special education school in Slovak Republic. Building and Environment 2017:120:29–40. doi:10.1016/j.buildenv.2017.05.00110.1016/j.buildenv.2017.05.001
[5] Arendt K., Krzaczek M., Tejchman J. Influence of input data on airflow network accuracy in residential buildings with natural wind- and stack-driven ventilation. Building Simulation 2017:10(2):229–238. doi:10.1007/s12273-016-0320-510.1007/s12273-016-0320-5
[6] Mukhtar A., Ng K. C., Yusoff M. Z. Design optimization for ventilation shafts of naturally-ventilated underground shelters for improvement of ventilation rate and thermal comfort. Renewable Energy 2018:115:183–198. doi:10.1016/j.renene.2017.08.05110.1016/j.renene.2017.08.051
[7] Silva M. F., Maas S., de Souza H. A., Gomes A. P. Post-occupancy evaluation of residential buildings in Luxembourg with centralized and decentralized ventilation systems, focusing on indoor air quality (IAQ). Assessment by questionnaires and physical measurements. Energy and Building 2017:148:119–127. doi:10.1016/j.enbuild.2017.04.04910.1016/j.enbuild.2017.04.049
[8] Gil-Baez M., Barrios-Padura A., Molina-Huelva M., Chacartegui R. Natural ventilation systems in 21st-century for near zero energy school buildings. Energy 2017:137:1186–1200. doi:10.1016/j.energy.2017.05.18810.1016/j.energy.2017.05.188
[9] Sekhar S. C., Goh S. E. Thermal comfort and IAQ characteristics of naturally/mechanically ventilated and air-conditioned bedrooms in a hot and humid climate. Building and Environment 2011:46:1905–1916. doi:10.1016/j.buildenv.2011.03.01210.1016/j.buildenv.2011.03.012
[12] Johnson D. L., Lynch R. A., Floyd E. L., Wang J., Bartels J. N. Indoor air quality in classrooms: Environmental measures and effective ventilation rate modeling in urban elementary schools. Building and Environment 2018:136:185–197. doi:10.1016/j.buildenv.2018.03.04010.1016/j.buildenv.2018.03.040
[13] Teleszewski T. J. The Viscous Dissipation Effect in a Regular Polygonal Duct for H2 Boundary Conditions. IOP Conference Series: Materials Science and Engineering 2017:269:012038. doi:10.1088/1757-899X/269/1/01203810.1088/1757-899X/269/1/012038
[14] Teleszewski T. J., Sorko S. A. Effect of viscous dissipation on forced convection for laminar flow through a straight regular polygonal duct using BEM method. International Journal of Numerical Methods for Heat and Fluid Flow 2018:28(1):220–238. doi:10.1108/HFF-09-2017-037110.1108/HFF-09-2017-0371
[15] Marć M., Śmiełowska M., Namieśnik J., Zabiegała B. Indoor air quality of everyday use spaces dedicated to specific purposes-a review. Environmental Science and Pollution Research 2018:25:2065–2082. doi:10.1007/s11356-017-0839-810.1007/s11356-017-0839-8577364429192399
[16] Skowron K., Grudlewska K., Kwiecińska-Piróg J., Gryń G., Śrutek M., Gospodarek-Komkowska E. Efficacy of radiant catalytic ionization to reduce bacterial populations in air and on different surfaces. Science of the Total Environment 2018:610–611:111–120. doi:10.1016/j.scitotenv.2017.08.03210.1016/j.scitotenv.2017.08.03228803189
[17] Śmiełowska M., Marć M., Zabiegała B. Indoor air quality in public utility environments-a review. Environmental Science and Pollution Research 2017:24:11166–11176. doi:10.1007/s11356-017-8567-710.1007/s11356-017-8567-7539327828236201
[18] Földváry V., Bekö G., Langer S., Arrhenius K., Petráš D. Effect of energy renovation on indoor air quality in multifamily residential buildings in Slovakia. Building and Environment 2017:122:363–372. doi:10.1016/j.buildenv.2017.06.00910.1016/j.buildenv.2017.06.009
[19] Bourdakis E., Simone A., Olesen B. W. An experimental study of the effect of different starting room temperatures on occupant comfort in Danish summer weather. Building and Environment 2018:136:269–278. doi:10.1016/j.buildenv.2018.03.04610.1016/j.buildenv.2018.03.046
[20] Ickiewicz I. Building thermomodernization and reducing air pollution. Ecological Chemistry and Engineering S 2013:20(4):805–816. doi:10.2478/eces-2013-005610.2478/eces-2013-0056
[21] Ickiewicz I. Ecological and economic aspects of modernizing district heating systems in north-eastern Poland. Ecological Chemistry and Engineering S 2011:18(4):429–443.
[23] PN-EN 15251:2007 Indoor environmental input parameters for design and assessment of energy performance of buildings - addressing indoor air quality, thermal environment, lighting and acoustics.
[24] Rogulski M. Indoor PM10 concentration measurements using low-cost monitors in selected locations in Warsaw. Energy Procedia 2018:147:137–144.10.1016/j.egypro.2018.07.043
[25] Rogulski M. Low-cost PM monitors as an opportunity to increase the spatiotemporal resolution of measurements of air quality. Energy Procedia 2017:128:437–444. doi:10.1016/j.egypro.2017.09.02610.1016/j.egypro.2017.09.026
[26] Gładyszewska-Fiedoruk K. Ocena powszechności stosowania systemów wentylacji [The assessment of ventilating systems popularity]. Technika Chłodnicza i Klimatyzacyjna 2014:3:117–119
[27] Musa A. R., Abdullah N. A. G., Che-Ani A. I., Tawil N. M., Tahir M. M. Temperature Analysis for Indoor Environmental Quality (IEQ) of UKM Architecture Studio. Procedia – Social and Behavioral Sciences 2012:60:575–581. doi:10.1016/j.sbspro.2012.09.42510.1016/j.sbspro.2012.09.425
[28] Sun Ch., Guo Y., Huang Ch., Zou Z., Hu Y., Liu W. Associations of Building Characteristics and Lifestyle Behaviors with Allergic Disease for Adults in Shanghai: from a Cross-sectional Survey. Procedia Engineering 2017:205:1130–1137. doi:10.1016/j.proeng.2017.10.18210.1016/j.proeng.2017.10.182
[29] Mac Naughton P., Satish U., Cedeno Laurent J. G., Flanigan S., Allen J. G. The impact of working in a green certified building on cognitive function and health. Building and Environment 2017:114:178–186. doi:10.1016/j.buildenv.2016.11.04110.1016/j.buildenv.2016.11.041554398428785124
[30] Othman M., Latif M. T., Mohamed A. F. Health impact assessment from building life cycles and trace metals in coarse particulate matter in urban office environments. Ecotoxicology and Environmental Safety 2018:148:293–302. doi:10.1016/j.ecoenv.2017.10.03410.1016/j.ecoenv.2017.10.03429080527
[31] Polizzi V., Adams A., Picco A. M., Adriaens E., Lenoir J., Van Peteghem C., De Saeger S., De Kimpe N. Influence of environmental conditions on production of volatiles by Trichoderma atroviride in relation with the sick building syndrome. Building and Environment 2011:46(4):945–954. doi:10.1016/j.buildenv.2010.10.02410.1016/j.buildenv.2010.10.024
[33] Ulpiani G. Overheating phenomena induced by fully-glazed facades: Investigation of a sick building in Italy and assessment of the benefits achieved via fuzzy control of the AC system. Solar Energy 2017:158:572–594. doi:10.1016/j.solener.2017.10.02410.1016/j.solener.2017.10.024
[34] Ulpiani G., Benedettelli M., di Perna C., Naticchia B. Overheating phenomena induced by fully-glazed facades: Investigation of a sick building in Italy and assessment of the benefits achieved via model predictive control of the AC system. Solar Energy 2017:157:830–852. doi:10.1016/j.solener.2017.09.00910.1016/j.solener.2017.09.009
[35] Spiru P., Simona P. L. A review on interactions between energy performance of the buildings, outdoor air pollution and the indoor air quality. Energy Procedia 2017:128:179–186. doi:10.1016/j.egypro.2017.09.03910.1016/j.egypro.2017.09.039
[36] Miezis M., Zvaigznitis K., Stancioff N., Soeftestad L. Climate Change and Buildings Energy Efficiency – the Key Role of Residents. Environmental and Climate Technologies 2016:17(1):30–43. doi:10.1515/rtuect-2016-000410.1515/rtuect-2016-0004