Have a personal or library account? Click to login
Design and Simulation of a Solar Energy System for Desalination of Brackish Water Cover

Design and Simulation of a Solar Energy System for Desalination of Brackish Water

Open Access
|Dec 2019

References

  1. [1] Hot issues: water scarcity [Online]. [Accessed: 28.03.2015]. Available: http://www.fao.org/nr/water/issues/scarcity.html
  2. [2] Escobar I. C. Chapter 14 Conclusion: A Summary of Challenges Still Facing Desalination and Water Reuse. Sustainability Science and Engineering 2010:2:389–397. doi:10.1016/S1871-2711(09)00214-1.10.1016/S1871-2711(09)00214-1
  3. [3] ONEP. National Office of Potable Water, Non-conventional waters use for drinking water supply. Internal Report, 1996.
  4. [4] U.S. Department of the Interior, Bureau of Reclamation and Sandia National Laboratories. Desalination and Water Purification Roadmap – A Report of the Executive Committee [Online]. Available: http://wrri.nmsu.edu/tbndrc/roadmapreport.pdf
  5. [5] Byrne P., et al. A review coupling of cooling, desalination and solar photovoltaic systems. Renewable and Sustainable Energy Reviews 2015:47:703–717. doi:10.1016/j.rser.2015.03.0810.1016/j.rser.2015.03.08
  6. [6] Latosov E., Volkova A., Siirde A., Thalfeldt M., Kurnitski J. The Impact of Parallel Energy Consumption on the District Heating Networks. Environmental and Climate Technologies 2019:23(1):1–13. doi:10.2478/rtuect-2019-000110.2478/rtuect-2019-0001
  7. [7] Ghaffour N., Missimer T. M., Amy G. L. Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 2013:309:197–207. doi:10.1016/j.desal.2012.10.01510.1016/j.desal.2012.10.015
  8. [8] Zotalis K., et al. Desalination technologies: Hellenic experience. Water 2014:6(5):1134–1150. doi:10.3390/w605113410.3390/w6051134
  9. [9] Banat F., Qiblawey H., Al-Nasser Q. Design and Operation of Small-Scale Photovoltaic-Driven Reverse Osmosis (PV-RO) Desalination Plant for Water Supply in Rural Areas. Computational Water, Energy, and Environmental Engineering 2012:1:31–36. doi:10.4236/cweee.2012.1300410.4236/cweee.2012.13004
  10. [10] Fritzmann C., Loewenberg J., Wintgens T., Melin T. State-of-the-art of reverse osmosis desalination. Desalination 2007:216(1–3):1–76. doi:10.1016/j.desal.2006.12.00910.1016/j.desal.2006.12.009
  11. [11] Outzourhit A., Elharrak N., Abouirass M., Mokhlisse A. Autonomous desalination units for fresh water supply in remote rural areas. Technological Perspectives for Rational Use of Water Resources in the Mediterranean Region 2009:157–162.
  12. [12] Alghoul M. A., et al. Design and experimental performance of brackish water reverse osmosis desalination unit powered by 2 kW photovoltaic system. Renewable Energy 2016:93:101–114. doi:10.1016/j.renene.2016.02.01510.1016/j.renene.2016.02.015
  13. [13] Ministry of Energy. Brackish groundwater in Morocco. Potentialities as alternative resources. Morocco: MEM, 2008.
  14. [14] The Institute of Energy and the Environment of Francophonie (IEPF) [Online]. Available: https://www.ifdd.francophonie.org/reseaux/mediaterre/index.php
  15. [15] Masen [Online]. Available: www.masen.ma
  16. [16] Phillipe A., Moulin P. Microfiltration and ultrafiltration: conduct pilot tests, DE. French Club of membranes, 2002.
  17. [17] Bouroche Le Bras A.-M. Membrane separation techniques. French vocabulary-English-German. Paris: INRA, 1994.
  18. [18] Marty P. Treatment of effluents by membrane filtration and agricultural. Industries Alimentaires et Agricoles, 1999.
  19. [19] Noble R. D., Sterns A. Membrane separations technology; principles and applications. Elsevier, 1995.
  20. [20] Bimbenet J. J., Albert D., Gilles T. Food process engineering; bases to applications. Paris: Dunod, 2002.
  21. [21] Aimar P., Dauphin G., Rene F. Membrane separations in the processes of the food industry. Techniques and documentation. Lavoisier, 1998.
  22. [22] Snyder S. A., et al. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 2007:202(1–3):156–181. doi:10.1016/j.desal.2005.12.05210.1016/j.desal.2005.12.052
  23. [23] Juang L. C., Tseng D. H., Lin H. Y. Membrane processes for water reuse from the effluent of industrial park wastewater treatment plant: a study on flux and fouling of membrane. Desalination 2007:202(1–3):302–309. doi:10.1016/j.desal.2005.12.06810.1016/j.desal.2005.12.068
  24. [24] World Health Organization. Guidelines for drinking-water quality: incorporating 1st and 2nd addenda, Recommendations. Geneva: WHO Press, 2008.
  25. [25] Bzioui M. National Report 2004 on water resources in Morocco. Water-Africa, 2004.
  26. [26] Meihong L., Zhenhua L., Zhihai C., Sanchuan Y., Congjie G. Comparison of reverse osmosis and nanofiltration membranes in the treatment of biologically treated textile effluent for water reuse. Desalination 2011:281:372–378. doi:10.1016/j.desal.2011.08.02310.1016/j.desal.2011.08.023
  27. [27] Elazhar F., Zouhri N., Ait habzize S., Taky M., Elmidaoui A. Study of Atlantic seawater desalinization by reverse osmosis using a pilot plant. Physical and Chemical News 2011:58:20–24.
  28. [28] Khalifa A., et al. Experimental and theoretical investigations on water desalination using direct contact membrane distillation. Desalination 2017:404:22–34. doi:10.1016/j.desal.2016.10.00910.1016/j.desal.2016.10.009
  29. [29] Burn S., et al. Desalination techniques – A review of the opportunities for desalination in agriculture. Desalination 2015:364:2–16. doi:10.1016/j.desal.2015.01.04110.1016/j.desal.2015.01.041
  30. [30] Miller S., Shemer H., Semiat R. Energy and environmental issues in desalination. Desalination 2015:366:2–8. doi:10.1016/j.desal.2014.11.03410.1016/j.desal.2014.11.034
  31. [31] Weng C. H., Sharma Y. C., Chua S. H. Adsorption of Cr(VI) from aqueous solutions by spent activated clay. Journal of Hazardous Materials 2008:155(1–2):65–75. doi:10.1016/j.jhazmat.2007.11.02910.1016/j.jhazmat.2007.11.029
  32. [32] Tahir S. S., Rauf N. Removal of cationic dye from aqueous solutions by adsorption onto bentonite clay. Chemosphere 2006:63(11):1842–1848. doi:10.1016/j.chemosphere.2005.10.03310.1016/j.chemosphere.2005.10.033
  33. [33] Xevgenos D., Moustakas K., Malamis D., Loizidou M. An overview on desalination & sustainability: renewable energy-driven desalination and brine management. Desalination and Water Treatment 2016:57(5):2304–2314. doi:10.1080/19443994.2014.98492710.1080/19443994.2014.984927
  34. [34] Giles C. H., Smith D., Huitson A. A General Treatment and Classification of the Solute Adsorption Isotherm. I. Theoretical. Journal of Colloid and Interface Science 1974:47(3):755–765. doi:10.1016/0021-9797(74)90252-510.1016/0021-9797(74)90252-5
  35. [35] Markovska L., Meshko V., Noveski V., Marinovski M. Solid diffusion control of the adsorption of basic dyes onto granular activated carbon and natural zeolite in fixed bed columns. Journal of the Serbian Chemical Society 2001:66(7):463–475. doi:10.2298/JSC0107463M10.2298/JSC0107463
  36. [36] Renaudin V. Desalination of seawater and brackish water. Nancy Brabois: Educsol, 2003.
  37. [37] Tata-Ducru F. Seawater desalination: review of the latest advances technological; economic balance sheet; critical analysis according to contexts. Paris, 2009.
  38. [38] Greenlee L. F., et al. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Research 2009:43(9):2317–2348. doi:10.1016/j.watres.2009.03.01010.1016/j.watres.2009.03.01019371922
  39. [39] Metaiche M. Technologie membranaire. Bouira: Universite de Bouira, 2014.
  40. [40] Tansakul C. Hybrid Membrane Processes for Pretreatment of Water from sea before desalination by reverse osmosis. Toulouse: University of Toulouse, 2009.10.5004/dwt.2009.858
  41. [41] Baker J. S. Judd S. J. Parsons S. Antiscale magnetic pretreatment of reverse osmosis feedwater. Desalination 1997:110(1–2):151–165. doi:10.1016/S0011-9164(97)00094-510.1016/S0011-9164(97)00094-5
  42. [42] Khiari W., Turki M., Belhadj J. Experimental prototype of a reverse osmosis desalination system powered by an intermittent renewable source without electrochemical storage. “Design and characterization for Energy-water management”. International Conference on Electrical Sciences and Technologies, Maghreb, 2016. doi:10.1109/CISTEM.2016.806681910.1109/CISTEM.2016.8066819
  43. [43] Alkhatib A. Reverse-Osmosis Desalination of Water Powered by Photo-Voltaic Modules. Computational Water, Energy and Environmental Engineering 2014:3(1):22–29. doi:10.4236/cweee.2014.3100310.4236/cweee.2014.31003
  44. [44] Photovoltaic modules. Turbo 300–320 W. Available: www.eurenergroup.com
  45. [45] Wijmans J. G., Baker R. W. The solution-diffusion model: a review. Journal of Membrane Science 1995:107(1–2):1–21. doi:10.1016/0376-7388(95)00102-I10.1016/0376-7388(95)00102-
  46. [46] Lee S., Lueptow R. M. Membrane Rejection of Nitrogen Compounds. Environmental and Science Technologies 2001:35(14):3008–3018. doi:10.1021/es001872410.1021/es0018724
  47. [47] Wang X., Tang Y. Exergetic analysis on the two-stage reverse osmosis seawater desalination system. Desalination and Water Treatment 2013:51:2862–2870. doi:10.1080/19443994.2012.75080910.1080/19443994.2012.750809
  48. [48] Sassi K. M., Mujtaba I. M. Simulation and Optimization of Full Scale Reverse Osmosis Desalination Plant. Computer Aided Chemical Engineering 2010:28:895–900. doi:10.1016/S1570-7946(10)28150-610.1016/S1570-7946(10)28150-6
  49. [49] Aybar H. S., et al. Solar Powered RO Desalination: Investigations on Pilot Project of PV Powered RO Desalination System. Applied Solar Energy 2010:46(4):275–284. doi:10.3103/S0003701X1004008010.3103/S0003701X10040080
  50. [50] McCutcheon J. R., McGinnis R. L., Elimelech M. Desalination by ammonia–carbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance. Journal of Membrane Science 2006:278(1–2):114–123. doi:10.1016/j.memsci.2005.10.04810.1016/j.memsci.2005.10.048
  51. [51] Adda A., Naceur W. M., Abbas M. Modeling and optimization of the energy consumption of a reverse osmosis desalination plant in Algeria. Revue des Energies Renouvelables 2016:19(2):154–164.
DOI: https://doi.org/10.2478/rtuect-2019-0017 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 257 - 276
Published on: Dec 23, 2019
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Hind Ennasri, Asmaa Drighil, Rahma Adhiri, Ahmed Fahli, Mohamed Moussetad, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.